Issues

 / 

2009

 / 

July

  

Reviews of topical problems


Energy losses in relativistic plasmas: QCD versus QED

,
Laboratoire de Physique Subatomique et des technologies associees (SUBATECH), Universite de Nantes, 4 rue Alfred Kastler, Nantes, 44307, France

We review the problem of evaluating the energy loss of an ultrarelativistic charged particle crossing a thermally equilibrated high-temperature е+е- or quark — gluon plasma. The average energy loss ΔЕ depends on the particle energy Е and mass М, the plasma temperature Т, the QED (QCD) coupling constant α(αs), and the distance L the particle travels in the medium. Two main mechanisms contribute to the energy loss: elastic collisions and bremsstrahlung. For each contribution, we use simple physical arguments to obtain the functional dependence ΔЕ(Е, М, Т, α(s), L) in different regions of the parameters. The suppression of bremsstrahlung due to the Landau — Pomeranchuk — Migdal effect is relevant in some regions. In addition, radiation by heavy particles is often suppressed for kinematical reasons. Still, when the travel distance L is not too small, and for large enough energies [E ≫ М2/(αТ) in the Abelian case and E ≫ М/ √αs in the non-Abelian case], radiative losses dominate over collisional ones. We rederive the known results and make some new observations. In particular, we emphasize that for light particles (m2 ≪ αT2), the difference in the behavior of ΔЕ(Е, М, Т, α(s), L) in QED and QCD is mostly due to the different problem setting in these two cases. In QED, it is natural to study the energy losses of an electron coming from infinity. In QCD, the quantity of physical interest is the medium-induced energy loss of a parton produced within the medium. In the case of an electron produced within a QED plasma, the medium-induced radiative energy loss ΔErad behaves similarly to ΔErad in QCD (in particular ΔErad ∝ L2 at small L), despite the photon and gluon radiation spectra being drastically different because the bremsstrahlung cones for soft gluons are broader than for soft photons. We also show that the average radiative loss of an ’asymptotic light parton’ crossing a QCD plasma is similar to that of an asymptotic electron crossing a QED plasma. For heavy particles (М2 ≫ αT2), the difference between ΔErad in QED and in QCD is more pronounced, even when the same physical situation is considered.

Fulltext pdf (456 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200907a.0697
PACS: 12.38.Mh, 25.75.−q, 52.27.Ny, 61.85.+p (all)
DOI: 10.3367/UFNe.0179.200907a.0697
URL: https://ufn.ru/en/articles/2009/7/a/
000272512700001
2-s2.0-70449372516
2009PhyU...52..659P
Citation: Peigné S, Smilga A V "Energy losses in relativistic plasmas: QCD versus QED" Phys. Usp. 52 659–685 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Пенье С, Смилга А В «Энергетические потери в релятивистской плазме: квантовая хромодинамика в сравнении с квантовой электродинамикой» УФН 179 697–726 (2009); DOI: 10.3367/UFNr.0179.200907a.0697

References (56) Cited by (61) ↓ Similar articles (20)

  1. Hansen Je, Tuchin K Int. J. Mod. Phys. E 33 (10) (2024)
  2. Kumar V, Shukla P Eur. Phys. J. A 60 (8) (2024)
  3. Isaksen J H, Takacs A, Tywoniuk K J. High Energ. Phys. 2023 (2) (2023)
  4. Comadran M, Manuel C, Carignano S Phys. Rev. D 107 (11) (2023)
  5. Isaksen J H, Tywoniuk K J. High Energ. Phys. 2023 (9) (2023)
  6. Hansen Je, Tuchin K Phys. Rev. D 108 (7) (2023)
  7. Song L-H, Wang P-Q, Zhang Y-J Physics Letters B 835 137592 (2022)
  8. Abdul Kh R, Accardi A et al Nuclear Physics A 1026 122447 (2022)
  9. Chang Ja H, Kaplan D E et al Phys. Rev. Lett. 129 (21) (2022)
  10. Hansen Je, Tuchin K Phys. Rev. D 105 (11) (2022)
  11. Brooks W K, López J A Physics Letters B 816 136171 (2021)
  12. Carignano S, Manuel C Phys. Rev. D 103 (11) (2021)
  13. Hansen Je, Tuchin K Phys. Rev. C 104 (3) (2021)
  14. Grosa F Strange and Non-Strange D-meson Production in pp, p-Pb, and Pb-Pb Collisions with ALICE at the LHC Springer Theses Chapter 2 (2021) p. 21
  15. Song L-H, Wang P-Q, Zhang Y-J Chinese Phys. C 45 041005 (2021)
  16. Klein S, Mueller A  H et al Phys. Rev. D 102 (9) (2020)
  17. Song L-H, Xin Sh-F, Zhang Y-J J. Phys. G: Nucl. Part. Phys. 47 055002 (2020)
  18. Evans Ja A, Gaidau C, Shelton Je J High Energy Phys 2020 (1) (2020)
  19. Mehtar-Tani Ya, Tywoniuk K J. High Energ. Phys. 2020 (6) (2020)
  20. Garny M, Palessandro A et al J. Cosmol. Astropart. Phys. 2019 021 (2019)
  21. Arleo F, Naïm Ch-J, Platchkov S J. High Energ. Phys. 2019 (1) (2019)
  22. Shi Shao-wu, Jiang Bing-feng et al Nuclear Physics A 979 265 (2018)
  23. Cougoulic F, Peigné S J. High Energ. Phys. 2018 (5) (2018)
  24. Carrington M E, Mrówczyński S, Schenke B Phys. Rev. C 95 (2) (2017)
  25. Munier S, Peigné S, Petreska E Phys. Rev. D 95 (1) (2017)
  26. Arleo F, Kolevatov R, Peigné S Phys. Rev. D 93 (1) (2016)
  27. Arnold P, Chang H-Ch, Iqbal Sh J. High Energ. Phys. 2016 (9) (2016)
  28. Liu Zh-Q, Zhang H et al Eur. Phys. J. C 76 (1) (2016)
  29. Mehtar-Tani Ya Nuclear And Particle Physics Proceedings 276-278 41 (2016)
  30. Mehtar-Tani Ya Nuclear Physics A 956 168 (2016)
  31. Arleo F, Kolevatov R et al EPJ Web Of Conferences 112 04005 (2016)
  32. Arnold P, Iqbal Sh J. High Energ. Phys. 2015 (4) (2015)
  33. Carrington M E, Deja K, Mrówczyński S Phys. Rev. C 92 (4) (2015)
  34. Aichelin J, Gossiaux P B, Gousset T Phys. Rev. D 89 (7) (2014)
  35. Brooks W K Nuclear Physics A 932 291 (2014)
  36. Aref’eva I Ya Uspekhi Fizicheskikh Nauk 184 569 (2014) [Aref’eva I Ya Phys.-Usp. 57 527 (2014)]
  37. Bluhm M, Gossiaux P B, Aichelin J Nuclear Physics A 910-911 248 (2013)
  38. Kim Y, Shin I Ja, Tsukioka T Progress In Particle And Nuclear Physics 68 55 (2013)
  39. Arleo F, Peigné S J. High Energ. Phys. 2013 (3) (2013)
  40. Noorian Z, Eslami P, Javidan K 20 (11) (2013)
  41. De Somnath, Srivastava D K J. Phys. G: Nucl. Part. Phys. 40 075106 (2013)
  42. Aichelin J, Gossiaux P B, Gousset T J. Phys.: Conf. Ser. 455 012046 (2013)
  43. Nahrgang M, Bluhm M et al J. Phys.: Conf. Ser. 422 012016 (2013)
  44. MEHTAR-TANI YACINE, MILHANO JOSÉ GUILHERME, TYWONIUK KONRAD Int. J. Mod. Phys. A 28 1340013 (2013)
  45. Vogel S, Gossiaux P B et al J. Phys.: Conf. Ser. 420 012034 (2013)
  46. Gossiaux P B Nuclear Physics A 910-911 301 (2013)
  47. SPOUSTA MARTIN Mod. Phys. Lett. A 28 1330017 (2013)
  48. LI WEI Mod. Phys. Lett. A 27 1230018 (2012)
  49. De Somnath, Srivastava D K J. Phys. G: Nucl. Part. Phys. 39 015001 (2012)
  50. Werner K Phys. Rev. Lett. 109 (10) (2012)
  51. Chatrchyan S, Khachatryan V et al Eur. Phys. J. C 72 (5) (2012)
  52. Chatrchyan S, Khachatryan V et al Phys. Rev. Lett. 109 (2) (2012)
  53. Dremin I M Nuclear Physics A 862-863 39 (2011)
  54. Vogel S, Gossiaux P B et al Phys. Rev. Lett. 107 (3) (2011)
  55. Arleo F, Peigné S, Sami T Phys. Rev. D 83 (11) (2011)
  56. Czajka A, Mrówczyński S Phys. Rev. D 84 (10) (2011)
  57. Jia J, Wei R Phys. Rev. C 82 (2) (2010)
  58. d’Enterria D Landolt-Börnstein - Group I Elementary Particles, Nuclei And Atoms Vol. Relativistic Heavy Ion Physics6.4 Jet quenching23 Chapter 16 (2010) p. 471
  59. Adare A, Afanasiev S et al Phys. Rev. Lett. 105 (14) (2010)
  60. Dremin I M, Leonidov A V Uspekhi Fizicheskikh Nauk 180 1167 (2010) [Dremin I M, Leonidov A V Phys.-Usp. 53 1123 (2010)]
  61. Majumder A, Müller B, Mrówczyński S Phys. Rev. D 80 (12) (2009)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions