Issues

 / 

2009

 / 

July

  

Reviews of topical problems


Energy losses in relativistic plasmas: QCD versus QED

,
Laboratoire de Physique Subatomique et des technologies associees (SUBATECH), Universite de Nantes, 4 rue Alfred Kastler, Nantes, 44307, France

We review the problem of evaluating the energy loss of an ultrarelativistic charged particle crossing a thermally equilibrated high-temperature е+е- or quark — gluon plasma. The average energy loss ΔЕ depends on the particle energy Е and mass М, the plasma temperature Т, the QED (QCD) coupling constant α(αs), and the distance L the particle travels in the medium. Two main mechanisms contribute to the energy loss: elastic collisions and bremsstrahlung. For each contribution, we use simple physical arguments to obtain the functional dependence ΔЕ(Е, М, Т, α(s), L) in different regions of the parameters. The suppression of bremsstrahlung due to the Landau — Pomeranchuk — Migdal effect is relevant in some regions. In addition, radiation by heavy particles is often suppressed for kinematical reasons. Still, when the travel distance L is not too small, and for large enough energies [E ≫ М2/(αТ) in the Abelian case and E ≫ М/ √αs in the non-Abelian case], radiative losses dominate over collisional ones. We rederive the known results and make some new observations. In particular, we emphasize that for light particles (m2 ≪ αT2), the difference in the behavior of ΔЕ(Е, М, Т, α(s), L) in QED and QCD is mostly due to the different problem setting in these two cases. In QED, it is natural to study the energy losses of an electron coming from infinity. In QCD, the quantity of physical interest is the medium-induced energy loss of a parton produced within the medium. In the case of an electron produced within a QED plasma, the medium-induced radiative energy loss ΔErad behaves similarly to ΔErad in QCD (in particular ΔErad ∝ L2 at small L), despite the photon and gluon radiation spectra being drastically different because the bremsstrahlung cones for soft gluons are broader than for soft photons. We also show that the average radiative loss of an ’asymptotic light parton’ crossing a QCD plasma is similar to that of an asymptotic electron crossing a QED plasma. For heavy particles (М2 ≫ αT2), the difference between ΔErad in QED and in QCD is more pronounced, even when the same physical situation is considered.

Fulltext pdf (456 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200907a.0697
PACS: 12.38.Mh, 25.75.−q, 52.27.Ny, 61.85.+p (all)
DOI: 10.3367/UFNe.0179.200907a.0697
URL: https://ufn.ru/en/articles/2009/7/a/
000272512700001
2-s2.0-70449372516
2009PhyU...52..659P
Citation: Peigné S, Smilga A V "Energy losses in relativistic plasmas: QCD versus QED" Phys. Usp. 52 659–685 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Пенье С, Смилга А В «Энергетические потери в релятивистской плазме: квантовая хромодинамика в сравнении с квантовой электродинамикой» УФН 179 697–726 (2009); DOI: 10.3367/UFNr.0179.200907a.0697

References (56) ↓ Cited by (59) Similar articles (20)

  1. Jackson J D Classical Electrodynamics (New York: Wiley, 1999)
  2. Lifshits E M, Pitaevskii L P Fizicheskaya Kinetika (M.: Fizmatlit, 2007); Lifshitz E M, Pitaevskii L P Physical Kinetics (Oxford: Butterworth-Heinemann, 1995)
  3. Shuryak E D Phys. Rep. 61 71 (1980)
  4. Bjorken J D Fermilab Preprint PUB-82/59-THY (1982)
  5. Adcox K et al. (PHENIX Collab.) Phys. Rev. Lett. 88 022301 (2002); Adcox K et al. (PHENIX Collab.) nucl-ex/0109003; Adler S S et al. (PHENIX Collab.) Phys. Rev. Lett. 91 072301 (2003); Adler S S et al. (PHENIX Collab.) nucl-ex/0304022
  6. Adler C et al. (STAR Collab.) Phys. Rev. Lett. 89 202301 (2002); Adler C et al. (STAR Collab.) nucl-ex/0206011
  7. Adler S S et al. (PHENIX Collab.) Phys. Rev. Lett. 96 032301 (2006); Adler S S et al. (PHENIX Collab.) nucl-ex/0510047
  8. Abelev B I et al. (STAR Collab.) Phys. Rev. Lett. 98 192301 (2007); Abelev B I et al. (STAR Collab.) nucl-ex/0607012
  9. d’Enterria D In Relativistic Heavy-Ion Physics (Landolt-Börnstein Series) (Berlin: Springer-Verlag, 2008), to appear; d’Enterria D arXiv:0902.2488
  10. Airapetian A et al. (HERMES Collab.) Eur. Phys. J. C 20 479 (2001); Airapetian A et al. (HERMES Collab.) hep-ex/0012049; Airapetian A et al. (HERMES Collab.) Phys. Lett. B 577 37 (2003); Airapetian A et al. (HERMES Collab.) hep-ex/0307023; Airapetian A et al. (HERMES Collab.) Nucl. Phys. B 780 1 (2007); Airapetian A et al. (HERMES Collab.) arXiv:0704.3270
  11. Albino S et al. arXiv:0804.2021
  12. Baier R et al. Phys. Lett. B 345 277 (1995); Baier R et al. hep-ph/9411409
  13. Baier R et al. Nucl. Phys. B 483 291 (1997); Baier R et al. hep-ph/9607355
  14. Baier R et al. Nucl. Phys. B 484 265 (1997); Baier R et al. hep-ph/9608322
  15. Baier R et al. Nucl. Phys. B 531 403 (1998); Baier R et al. hep-ph/9804212
  16. Zakharov B G Pis’ma ZhETF 63 906 (1996); Zakharov B G JETP Lett. 63 952 (1996); Zakharov B G hep-ph/9607440
  17. Zakharov B G Pis’ma ZhETF 65 585 (1997); Zakharov B G JETP Lett. 65 615 (1997); Zakharov B G hep-ph/9704255
  18. Zakharov B G Yad. Fiz. 61 924 (1998); Zakharov B G Phys. At. Nucl. 61 838 (1998); Zakharov B G hep-ph/9807540
  19. Zakharov B G Pis’ma ZhETF 73 55 (2001); Zakharov B G JETP Lett. 73 49 (2001); Zakharov B G hep-ph/0012360
  20. Gyulassy M, Lévai P, Vitev I Nucl. Phys. B 571 197 (2000); Gyulassy M, Lévai P, Vitev I hep-ph/9907461
  21. Gyulassy M, Levai P, Vitev I Phys. Rev. Lett. 85 5535 (2000); Gyulassy M, Levai P, Vitev I nucl-th/0005032
  22. Gyulassy M, Levai P, Vitev I Nucl. Phys. B 594 371 (2001); Gyulassy M, Levai P, Vitev I nucl-th/0006010
  23. Landau L D, Pomeranchuk I Dokl. Akad. Nauk SSSR 92 535 (1953); Landau L D, Pomeranchuk I Dokl. Akad. Nauk SSSR 92 735 (1953); Translated into English, Landau L D, Pomeranchuk ILandau L The Collected Papers Of L.D. Landau (New York: Pergamon Press, 1965) p. 589
  24. Migdal A B Phys. Rev. 103 1811 (1956)
  25. Feinberg E L Usp. Fiz. Nauk 132 255 (1980); Feinberg E L Sov. Phys. Usp. 23 629 (1980), for a pedagogic review
  26. Dokshitzer Yu L, Kharzeev D E Phys. Lett. B 519 199 (2001); Dokshitzer Yu L, Kharzeev D E hep-ph/0106202
  27. Baier R, Schiff D, Zakharov B G Annu. Rev. Nucl. Part. Sci. 50 37 (2000); Baier R, Schiff D, Zakharov B G hep-ph/0002198
  28. Thoma M H, Gyulassy M Nucl. Phys. B 351 491 (1991)
  29. Mrówczyński S Phys. Lett. B 269 383 (1991)
  30. Braaten E, Thoma M H Phys. Rev. D 44 1298 (1991); Braaten E, Thoma M H Phys. Rev. D 44 R2625 (1991)
  31. Thoma M H J. Phys. G 26 1507 (2000); Thoma M H hep-ph/0003016
  32. Peshier A Phys. Rev. Lett. 97 212301 (2006); Peshier A hep-ph/0605294
  33. Peigné S, Peshier A Phys. Rev. D 77 014015 (2008); Peigné S, Peshier A arXiv:0710.1266
  34. Peigné S, Peshier A Phys. Rev. D 77 114017 (2008); Peigné S, Peshier A arXiv:0802.4364
  35. Lebedev V V, Smilga A V Ann. Physics 202 229 (1990); sm. obzor, Smilga A V Phys. Rep. 291 1 (1997); Smilga A V hep-ph/9612347
  36. Blaizot J-P, Iancu E Phys. Rep. 359 355 (2002); Blaizot J-P, Iancu E hep-ph/0101103
  37. Arnold P, Moore G D, Yaffe L C JHEP 0011 001 (2000); Arnold P, Moore G D, Yaffe L C hep-ph/0010177; Arnold P, Moore G D, Yaffe L C JHEP 0305 051 (2003); Arnold P, Moore G D, Yaffe L C hep-ph/0302165
  38. Ginzburg I F i dr. Pis’ma ZhETF 34 514 (1981); Ginzburg I F et al. JETP Lett. 34 491 (1981)
  39. Weinberg S The Quantum Theory Of Fields I (Cambridge: Cambridge Univ. Press, 1995), 13; Smilga A V Lectures On Quantum Chromodynamics (River Edge, NJ: World Scientific, 2001), Lecture 10
  40. Sm. obzor po ionizatsionnym poteryam, Yao W-M et al. "Review of Particle Physics" J. Phys. G 33 1 (2006)
  41. Baier R et al. Nucl. Phys. B 478 577 (1996); Baier R et al. hep-ph/9604327
  42. Anthony P L et al. (SLAC-E-146 Collab.) Phys. Rev. D 56 1373 (1997); Anthony P L et al. (SLAC-E-146 Collab.) hep-ex/9703016; Anthony P L et al. (SLAC-E-146 Collab.) Phys. Rev. Lett. 75 1949 (1995)
  43. Hansen H D et al. Phys. Rev. Lett. 91 014801 (2003)
  44. Zakharov B G Pis’ma ZhETF 64 737 (1996); Zakharov B G JETP Lett. 64 781 (1996); Zakharov B G hep-ph/9612431; Zakharov B G Pis’ma ZhETF 78 1279 (2003); Zakharov B G JETP Lett. 78 759 (2003); Zakharov B G hep-ph/0311063
  45. Aitala E M et al. (Fermilab E791 Collab.) Phys. Rev. Lett. 86 4773 (2001); Aitala E M et al. (Fermilab E791 Collab.) hep-ex/0010044
  46. Ashery D Nucl. Phys. B Proc. Suppl. 161 8 (2006); Ashery D hep-ex/0511052
  47. Gunion J F, Bertsch G Phys. Rev. D 25 746 (1982)
  48. Marquet C arXiv:0810.2572
  49. Baier R et al. JHEP 0109 033 (2001); Baier R et al. hep-ph/0106347
  50. Smilga A V Can. J. Phys. 71 295 (1993)
  51. Arnold P, Xiao W Phys. Rev. D 78 125008 (2008); Arnold P, Xiao W arXiv:0810.1026
  52. Maldacena J M Adv. Theor. Math. Phys. 2 231 (1998); Maldacena J M hep-th/9711200; Gubser S S, Klebanov I R, Polyakov A M Phys. Lett. B 428 105 (1998); Gubser S S, Klebanov I R, Polyakov A M hep-th/9802109
  53. Herzog C P et al. JHEP 0607 013 (2006); Herzog C P et al. hep-th/0605158; Gubser S S Phys. Rev. D 74 126005 (2006); Gubser S S hep-th/0605182
  54. Fadafan K B et al. arXiv:0809.2869
  55. Gubser S S et al. JHEP 0810 052 (2008); Gubser S S et al. arXiv:0803.1470; Hatta Y, Iancu E, Mueller A H JHEP 0805 037 (2008); Hatta Y, Iancu E, Mueller A H arXiv:0803.2481
  56. Chesler P M et al. arXiv:0810.1985

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions