Issues

 / 

2008

 / 

May

  

Methodological notes


On the problem of the effective parameters of metamaterials

 a,  a,  b
a Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Laboratoire de Génie Electrique de Paris Supélec-Pierre & Marie Curie University, Paris, France

The mixing formulas for calculating the effective parameters of composite materials with inclusions having a negative permeability or permittivity are analyzed. The problems appearing when various formulas are utilized were outlined, and the computation algorithms yielding physically meaningful solutions were described. The problem of the calculation of a refractive index for media with arbitrary values of permittivity and permeability is discussed.

Fulltext pdf (204 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n05ABEH006533
PACS: 41.20.−q, 78.20.Ci, 81.05.Rm (all)
DOI: 10.1070/PU2008v051n05ABEH006533
URL: https://ufn.ru/en/articles/2008/5/e/
000259376200005
2008PhyU...51..485V
Citation: Vinogradov A P, Dorofeenko A V, Zouhdi S "On the problem of the effective parameters of metamaterials" Phys. Usp. 51 485–492 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Виноградов А П, Дорофеенко А В, Зухди С «К вопросу об эффективных параметрах метаматериалов» УФН 178 511–518 (2008); DOI: 10.3367/UFNr.0178.200805e.0511

References (71) Cited by (58) ↓ Similar articles (20)

  1. Pereyra P Physica Status Solidi (b) 259 (3) (2022)
  2. Davidovich M V J. Exp. Theor. Phys. 132 159 (2021)
  3. Introduction to Modern Planar Transmission Lines 1 (2021) p. 785
  4. Kulikova D P, Dobronosova A A et al Opt. Express 28 32049 (2020)
  5. Davidovich M V Opt. Spectrosc. 128 1379 (2020)
  6. Davidovich M V Phys.-Usp. 62 1173 (2019)
  7. Pankin P S, Vetrov S Y, Timofeev I V J. Opt. 21 035103 (2019)
  8. Yew P, Lee S C et al Optical Materials 96 109320 (2019)
  9. Geints Yu E, Panina E K, Zemlyanov A A Journal Of Quantitative Spectroscopy And Radiative Transfer 236 106595 (2019)
  10. Rybin M V, Limonov M F Phys.-Usp. 62 823 (2019)
  11. Barabanenkov Yu N, Barabanenkov M Yu, Nikitov S A J. Phys.: Condens. Matter 30 485801 (2018)
  12. Davidovich M V J. Exp. Theor. Phys. 127 1 (2018)
  13. Boginskaya I A, Afanasiev K N et al 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), (2017) p. 3094
  14. Sandu T, Boldeiu G et al 2017 International Semiconductor Conference (CAS), (2017) p. 209
  15. Apresyan L A, Vlasov D V et al Tech. Phys. 62 6 (2017)
  16. Toptygin I N, Levina K Uspekhi Fizicheskikh Nauk 186 146 (2016)
  17. Averbukh B B, Averbukh I B Russ Phys J 59 736 (2016)
  18. Fisanov V V Russ Phys J 57 1336 (2015)
  19. Antipov A A, Arakelyan S M et al Opt. Spectrosc. 119 119 (2015)
  20. Nechepurenko I A, Dorofeenko A V et al Moscow Univ. Chem. Bull. 70 117 (2015)
  21. Kozik S E, Skoptsov E A et al J Appl Spectrosc 82 409 (2015)
  22. Rukhlenko I D Plasmonics 9 1257 (2014)
  23. Wang X-Zh, Zhao Ya 113 (2) (2013)
  24. Smolyakov A, Fourkal E Phys. Rev. A 87 (1) (2013)
  25. Afanas’ev S A, Sannikov D G, Sementsov D I J. Commun. Technol. Electron. 58 1 (2013)
  26. Barykina E I, Zolotovskii I O, Sementsov D I J. Commun. Technol. Electron. 57 164 (2012)
  27. Altunin K K, Gadomsky O N Optics Communications 285 816 (2012)
  28. Dorofeenko A V, Zyablovsky A A et al Uspekhi Fizicheskikh Nauk 182 1157 (2012)
  29. Novitsky A V, Galynsky V M, Zhukovsky S V Phys. Rev. B 86 (7) (2012)
  30. Santacruz L A, Solarte E, Garcia H J. Phys.: Conf. Ser. 274 012114 (2011)
  31. Shevchenko V V Uspekhi Fizicheskikh Nauk 181 1171 (2011)
  32. Zhang D, Cherkaev E, Lamoureux M P Applied Mathematics And Computation 217 7092 (2011)
  33. Pevtsov A B, Grudinkin S A et al Semiconductors 44 1537 (2010)
  34. Liznev E O, Dorofeenko A V, Vinogradov A P J. Opt. Technol. 77 533 (2010)
  35. Makarov V P, Rukhadze A A, Samokhin A A Plasma Phys. Rep. 36 1129 (2010)
  36. Raghunathan Sh B, Budko N V Phys. Rev. B 81 (5) (2010)
  37. Liznev E O, Dorofeenko A V et al Appl. Phys. A 100 321 (2010)
  38. Advances in the Casimir Effect 1 (2009) p. v
  39. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 136
  40. Averkov Yu O, Kats A V, Yakovenko V M Tech. Phys. 54 1245 (2009)
  41. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 682
  42. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009)
  43. Gadomsky O N, Altunin K K, Ushakov N M Jetp Lett. 90 251 (2009)
  44. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 73
  45. Advances in the Casimir Effect 1 (2009) p. iv
  46. Vinogradov A P, Burokur N, Zouhdi S Eur. Phys. J. Appl. Phys. 46 32604 (2009)
  47. Barabanenkov Yu N Uspekhi Fizicheskikh Nauk 179 534 (2009)
  48. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 401
  49. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 625
  50. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 643
  51. Wallén H, Kettunen H, Sihvola A Metamaterials and Plasmonics: Fundamentals, Modelling, Applications NATO Science For Peace And Security Series B: Physics And Biophysics Chapter 7 (2009) p. 91
  52. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 328
  53. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 262
  54. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 103
  55. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 698
  56. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 281
  57. Bordag M, Klimchitskaya G L et al Advances in the Casimir Effect 1 (2009) p. 351
  58. Sambale A, Welsch D-G et al Phys. Rev. A 78 (5) (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions