Issues

 / 

2008

 / 

May

  

Methodological notes


Impedance and parametric excitation of oscillators

 a, b
a University Academic Division of Nonlinear Optics, Institute of Electro-Physics of the Ural Division of the Russian Academy of Sciences, pr. Lenina 76, Chelyabinsk, 454010, Russian Federation
b College of Optics and Photonics/CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816-2700, USA

This article deals with the linear ordinary differential equations for one or several coupled oscillators. Emphasis is placed on the separate notions of the frequency matrix (as a kinematic entity) and the impedance matrix. The latter matrix is explicitly introduced in this article, and its time dependence is shown to be responsible for parametric excitation and for nonconservation of adiabatic invariants.

Fulltext pdf (432 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n05ABEH006498
PACS: 05.45.Xt, 45.05.+x, 84.30.−r (all)
DOI: 10.1070/PU2008v051n05ABEH006498
URL: https://ufn.ru/en/articles/2008/5/d/
000259376200004
2-s2.0-51549117543
2008PhyU...51..465Z
Citation: Zel’dovich B Ya "Impedance and parametric excitation of oscillators" Phys. Usp. 51 465–484 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Зельдович Б Я «Импеданс и параметрическое возбуждение осцилляторов» УФН 178 489–510 (2008); DOI: 10.3367/UFNr.0178.200805d.0489

References (13) Cited by (7) Similar articles (13) ↓

  1. P. Paradoksov “How quantum mechanics helps us understand classical mechanicsSov. Phys. Usp. 9 618–620 (1967)
  2. B.Ya. Zel’dovich, M.J. Soileau “Bi-frequency pendulum on a rotary platform: modeling various optical phenomenaPhys. Usp. 47 1239–1255 (2004)
  3. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillationsPhys. Usp. 46 293–307 (2003)
  4. A.A. Shatskiy, I.D. Novikov, N.S. Kardashev “The Kepler problem and collisions of negative massesPhys. Usp. 54 381–385 (2011)
  5. V.P. Bykov “Squeezed light and nonclassical motion in mechanicsPhys. Usp. 36 (9) 841–850 (1993)
  6. A.G. Shalashov “Can we refer to Hamilton equations for an oscillator with friction?Phys. Usp. 61 1082–1088 (2018)
  7. L.N. Kaptsov “Four lecture demonstrations for courses on the theory of oscillations and radio engineeringSov. Phys. Usp. 6 933–938 (1964)
  8. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiationPhys. Usp. 58 819–827 (2015)
  9. V.V. Shevchenko “Forward and backward waves: three definitions and their interrelation and applicabilityPhys. Usp. 50 287–292 (2007)
  10. I.A. Sadovskyy “Reduction of the scattering matrix arrayPhys. Usp. 58 872–876 (2015)
  11. Yu.L. Klimontovich “What are stochastic filtering and stochastic resonance?Phys. Usp. 42 37–44 (1999)
  12. S.I. Chermyanin “Predictions of the general theory of relativity are free from ambiguitySov. Phys. Usp. 33 (5) 385–387 (1990)
  13. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions