Issues

 / 

2008

 / 

May

  

Methodological notes


A dynamic model of the wormhole and the Multiverse model

 a,  b, a, c,  a
a Astro Space Centre, Lebedev Physical Institute, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russian Federation
b National Research Centre Kurchatov Institute, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
c Niels Bohr Institute, Blegdamsvej 17, Copenhagen, DK-2100, Denmark

An analytic solution methodology for general relativity (GR) equations describing the hypothetical phenomenon of wormholes is presented and the analysis of wormholes in terms of their physical properties is discussed. An analytic solution of the GR equations for static and dynamic spherically symmetric wormholes is given. The dynamic solution generally describes a ‘traversable’ wormhole, i.e., one allowing matter, energy, and information to pass through it. It is shown how the energy-momentum tensor of matter in a wormhole can be represented in a form allowing the GR equations to be solved analytically, which has a crucial methodological importance for analyzing the properties of the solution obtained. The energy-momentum tensor of wormhole matter is represented as a superposition of a spherically symmetric magnetic (or electric) field and negative- density dust matter, serving as exotic matter necessary for a ‘traversable’ wormhole to exist. The dynamics of the model are investigated. A similar model is considered (and analyzed in terms of inflation) for the Einstein equations with a Λ term. Superposing enough dust matter, a magnetic field, and a Λ term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormhole-connected spherical universes. This Multiverse can have its total energy positive everywhere in space, and in addition can be out of equilibrium (i.e., dynamic).

Fulltext is available at IOP
PACS: 04.20.−q, 04.40.−b, 04.70.−s (all)
DOI: 10.1070/PU2008v051n05ABEH006581
URL: https://ufn.ru/en/articles/2008/5/c/
Citation: Shatskii A A, Novikov I D, Kardashev N S "A dynamic model of the wormhole and the Multiverse model" Phys. Usp. 51 457–464 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:   ,   ,    «   » 178 481–488 (2008); DOI: 10.3367/UFNr.0178.200805c.0481

References (32) ↓ Cited by (47) Similar articles (20)

  1. Hawking S W, in Black Holes And The Structure Of The Universe (Eds C Teitelboim, J Zanelli) (Singapore: World Scientific, 2000) p. 23
  2. Lobo F S N Phys. Rev. D 71 084011 (2005)
  3. Shinkai H, Hayward S A Phys. Rev. D 66 044005 (2002)
  4. Morris M S, Thorne K S Am. J. Phys. 56 395 (1988)
  5. Novikov I D Zh. Eksp. Teor. Fiz. 95 769 (1989); Novikov I D Sov. Phys. JETP 68 439 (1989)
  6. Novikov I D Phys. Rev. D 45 1989 (1992)
  7. Hawking S W Phys. Rev. D 46 603 (1992)
  8. Visser M Lorentzian Wormholes: From Einstein To Hawking (Woodbury, NY: AIP, 1995)
  9. Shatskii A A Astron. Zhurn. 81 579 (2004); Shatskii A A Astron. Rep. 48 525 (2004)
  10. Shatskii A A Astron. Zhurn. 84 99 (2007); Shatskii A A Astron. Rep. 51 81 (2007)
  11. Kardashev N S, Novikov I D, Shatskii A A Astron. Zhurn. 83 675 (2006); Kardashev N S, Novikov I D, Shatskii A A Astron. Rep. 50 601 (2006)
  12. Kardashev N S, Novikov I D, Shatskiy A A Int. J. Mod. Phys. D 16 909 (2007)
  13. Novikov I D, Kardashev N S, Shatskii A A Usp. Fiz. Nauk 177 1017 (2007); Novikov I D, Kardashev N S, Shatskii A A Phys. Usp. 50 965 (2007)
  14. Cherepashchuk A M Vestn. MGU, Ser. 3, Fiz. Astron. (2) 62 (2005); Cherepashchuk A M Moscow Univ. Phys. Bull. 60 (2) 74 (2005)
  15. Bronnikov K A, Starobinsky A A Pis’ma ZhETF 85 3 (2007); Bronnikov K A, Starobinsky A A JETP Lett. 85 1 (2007); Bronnikov K A, Starobinsky A A gr-qc/0612032
  16. Frolov V P, Novikov I D Black Hole Physics : Basic Concepts And New Developments ((Fundamental Theories of Physics, Vol. 96)) (Dordrecht: Kluwer, 1998)
  17. Armendáriz-Picón C Phys. Rev. D 65 104010 (2002); Armendáriz-Picón C gr-qc/0201027
  18. Carr B (Ed.) Universe Or Multiverse? (Cambridge: Cambridge Univ. Press, 2007)
  19. Ellis H G J. Math. Phys. 14 104 (1973)
  20. Tolman R C Proc. Natl. Acad. Sci. USA 20 169 (1934)
  21. Zel’manov A L Dokl. Akad. Nauk SSSR 107 815 (1956); Zel’manov A L Sov. Phys. Dokl. 1 227 (1956)
  22. Novikov I D Vestn. MGU, Ser. 3, Fiz. Astron. (5) 90 (1962)
  23. Novikov I D Vestn. MGU, Ser. 3, Fiz. Astron. (6) 61 (1962)
  24. Oppenheimer J R, Snyder H Phys. Rev. 56 455 (1939)
  25. Saibal R et al. Int. J. Mod. Phys. D 16 1745 (2007)
  26. Shatskii A A, Andreev A Yu Zh. Eksp. Teor. Fiz. 116 353 (1999); Shatskii A A, Andreev A Yu JETP 89 189
  27. Shatskii A A Zh. Eksp. Teor. Fiz. 131 851 (2007); Shatskii A A JETP 104 743 (2007)
  28. Fisher I Zh. Eksp. Teor. Fiz. 18 636 (1948)
  29. Janis A I, Newman E T, Winicour J Phys. Rev. Lett. 20 878 (1968)
  30. Wyman M Phys. Rev. D 24 839 (1981)
  31. Landau L D, Lifshits E M Teoriya Polya (M.: Nauka, 1988); Translated into English, Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Pergamon Press, 1983)
  32. Zel’dovich Ya B, Novikov I D Relyativistskaya Astrofizika (M.: Nauka, 1967); Translated into English, Zel’dovich Ya B, Novikov I D Relativistic Astrophysics Vol. 1 Stars And Relativity (Chicago: Univ. of Chicago Press, 1971)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions