Issues

 / 

2008

 / 

May

  

Methodological notes


A dynamic model of the wormhole and the Multiverse model

 a,  b, a, c,  a
a Astro Space Centre, Lebedev Physical Institute, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russian Federation
b National Research Centre Kurchatov Institute, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
c Niels Bohr Institute, Blegdamsvej 17, Copenhagen, DK-2100, Denmark

An analytic solution methodology for general relativity (GR) equations describing the hypothetical phenomenon of wormholes is presented and the analysis of wormholes in terms of their physical properties is discussed. An analytic solution of the GR equations for static and dynamic spherically symmetric wormholes is given. The dynamic solution generally describes a ‘traversable’ wormhole, i.e., one allowing matter, energy, and information to pass through it. It is shown how the energy-momentum tensor of matter in a wormhole can be represented in a form allowing the GR equations to be solved analytically, which has a crucial methodological importance for analyzing the properties of the solution obtained. The energy-momentum tensor of wormhole matter is represented as a superposition of a spherically symmetric magnetic (or electric) field and negative- density dust matter, serving as exotic matter necessary for a ‘traversable’ wormhole to exist. The dynamics of the model are investigated. A similar model is considered (and analyzed in terms of inflation) for the Einstein equations with a Λ term. Superposing enough dust matter, a magnetic field, and a Λ term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormhole-connected spherical universes. This Multiverse can have its total energy positive everywhere in space, and in addition can be out of equilibrium (i.e., dynamic).

Fulltext is available at IOP
PACS: 04.20.−q, 04.40.−b, 04.70.−s (all)
DOI: 10.1070/PU2008v051n05ABEH006581
URL: https://ufn.ru/en/articles/2008/5/c/
Citation: Shatskii A A, Novikov I D, Kardashev N S "A dynamic model of the wormhole and the Multiverse model" Phys. Usp. 51 457–464 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:   ,   ,    «   » 178 481–488 (2008); DOI: 10.3367/UFNr.0178.200805c.0481

References (32) Cited by (47) ↓ Similar articles (20)

  1. Tsukamoto N, Kokubu T Phys. Rev. D 101 (4) (2020)
  2. Cremona F, Pirotta F, Pizzocchero L Gen Relativ Gravit 51 (1) (2019)
  3. Novikov I D, Novikov D I J. Exp. Theor. Phys. 129 495 (2019)
  4. Dokuchaev V Int. J. Mod. Phys. D 28 1941005 (2019)
  5. Dokuchaev V I, Nazarova N O J. Exp. Theor. Phys. 128 578 (2019)
  6. Evseev O  A, Melichev O  I Phys. Rev. D 97 (12) (2018)
  7. Tsukamoto N, Kokubu T Phys. Rev. D 98 (4) (2018)
  8. Tsukamoto N, Gong Yu Phys. Rev. D 97 (8) (2018)
  9. Evseev O, Melichev O et al EPJ Web Conf. 191 07012 (2018)
  10. Novikov I D Uspekhi Fizicheskikh Nauk 188 301 (2018)
  11. Dokuchaev V, Nazarova N J. Phys.: Conf. Ser. 934 012044 (2017)
  12. Dokuchaev V I, Nazarova N O Jetp Lett. 106 637 (2017)
  13. Tsukamoto N, Harada T Phys. Rev. D 95 (2) (2017)
  14. Kardashev N S Astron. Rep. 61 310 (2017)
  15. Tsukamoto N Phys. Rev. D 95 (8) (2017)
  16. Evseev O  A, Melichev O  I Phys. Rev. D 96 (2) (2017)
  17. Kardashev N S Astronomicheskii Zhurnal (4) 301 (2017)
  18. Rubakov V A, Rubakov V A Teoreticheskaya Matematicheskaya Fizika 188 337 (2016) [Rubakov V A Theor Math Phys 187 743 (2016)]
  19. Rubakov V A, Rubakov V A Teoreticheskaya Matematicheskaya Fizika 188 337 (2016) [Rubakov V A Theor Math Phys 188 1253 (2016)]
  20. Azreg-Aïnou M Eur. Phys. J. C 76 (1) (2016)
  21. Konoplya R A, Zhidenko A J. Cosmol. Astropart. Phys. 2016 043 (2016)
  22. Rubakov V A, Rubakov V A Teoreticheskaya Matematicheskaya Fizika 187 338 (2016)
  23. Azreg-Aïnou M Eur. Phys. J. C 76 (1) (2016)
  24. Fortov V E Springer Series In Materials Science Vol. Extreme States of Matter216 Chapter 9 (2016) p. 505
  25. Tsukamoto N Phys. Rev. D 94 (12) (2016)
  26. Dokuchaev V I, Eroshenko Yu N Uspekhi Fizicheskikh Nauk 185 829 (2015) [Dokuchaev V I, Eroshenko Yu N Phys.-Usp. 58 772 (2015)]
  27. Novikov I D, Shatskiy A A, Novikov D I Astron. Rep. 59 339 (2015)
  28. Tsukamoto N, Bambi C Phys. Rev. D 91 (10) (2015)
  29. Kardashev N S, Lipatova L N et al Astron. Rep. 59 89 (2015)
  30. Kardashev N S, Novikov I D et al Uspekhi Fizicheskikh Nauk 184 1319 (2014) [Kardashev N S, Novikov I D et al Phys.-Usp. 57 1199 (2014)]
  31. Rubakov V A Uspekhi Fizicheskikh Nauk 184 137 (2014) [Rubakov V A Phys.-Usp. 57 128 (2014)]
  32. Fortov V E, Lomonosov I V Uspekhi Fizicheskikh Nauk 184 231 (2014) [Fortov V E, Lomonosov I V Phys.-Usp. 57 219 (2014)]
  33. Cherepashchuk A M Uspekhi Fizicheskikh Nauk 183 535 (2013) [Cherepashchuk A M Phys.-Usp. 56 509 (2013)]
  34. Bronnikov K A, Lipatova L N et al Gravit. Cosmol. 19 269 (2013)
  35. Alexeyev S O, Rannu K A, Gareeva D V J. Exp. Theor. Phys. 113 628 (2011)
  36. Fortov V E Extreme States of Matter The Frontiers Collection Chapter 7 (2011) p. 185
  37. González-Díaz P F, Alonso-Serrano A Phys. Rev. D 84 (2) (2011)
  38. Sarbach O, Zannias T Phys. Rev. D 81 (4) (2010)
  39. Khusnutdinov N R, Popov A A, Lipatova L N Class. Quantum Grav. 27 215012 (2010)
  40. Novikova E I, Novikov I D Phys. Rev. D 81 (10) (2010)
  41. Shatskiy A A, Doroshkevich A G et al J. Exp. Theor. Phys. 110 235 (2010)
  42. Maeda H, Harada T, Carr B J Phys. Rev. D 79 (4) (2009)
  43. Kardashev N S Uspekhi Fizicheskikh Nauk 179 1191 (2009)
  44. Shatskii A A Uspekhi Fizicheskikh Nauk 179 861 (2009)
  45. DOROSHKEVICH ANDREY, HANSEN JAKOB et al Int. J. Mod. Phys. D 18 1665 (2009)
  46. Yershov V 7 (1) (2009)
  47. Novikov D I, Doroshkevich A G et al Astron. Rep. 53 1079 (2009)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions