Issues

 / 

2008

 / 

April

  

Methodological notes


Statistical topography and Lyapunov exponents in stochastic dynamical systems


A M Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017, Russian Federation

This article discusses the relationship between the statistical description of stochastic dynamical systems based on the ideas of statistical topography and the traditional analysis of Lyapunov stability of dynamical systems with the use of the Lyapunov characteristic indices (Lyapunov exponents). As an illustration, some coherent phenomena are considered that occur with a probability of unity, i.e., in almost all realizations of the stochastic systems. Among such phenomena are the diffusion and clustering of a passive tracer in random hydrodynamic flows, the dynamic localization of plane waves in layered random media, and the emergence of caustic patterns of the wave field in multidimensional random media.

Fulltext pdf (407 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n04ABEH006450
PACS: 05.40.−a, 05.45.−a, 42.25.Dd, 46.65.+g, 47.27.eb (all)
DOI: 10.1070/PU2008v051n04ABEH006450
URL: https://ufn.ru/en/articles/2008/4/e/
000258187900005
2-s2.0-49249111465
2008PhyU...51..395K
Citation: Klyatskin V I "Statistical topography and Lyapunov exponents in stochastic dynamical systems" Phys. Usp. 51 395–407 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кляцкин В И «Статистическая топография и ляпуновские экспоненты в динамических стохастических системах» УФН 178 419–431 (2008); DOI: 10.3367/UFNr.0178.200804e.0419

References (26) Cited by (17) Similar articles (20) ↓

  1. V.I. Klyatskin, A.I. Saichev “Statistical and dynamic localization of plane waves in randomly layered mediaSov. Phys. Usp. 35 (3) 231–247 (1992)
  2. V.I. Klyatskin, K.V. Koshel’ “Simple example of the development of cluster structure of a passive tracer field in random flowsPhys. Usp. 43 717–723 (2000)
  3. O.G. Bakunin “Correlation and percolation properties of turbulent diffusionPhys. Usp. 46 733–744 (2003)
  4. V.I. Klyatskin “Statistical description of the diffusion of a passive tracer in a random velocity fieldPhys. Usp. 37 501–513 (1994)
  5. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  6. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  7. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  8. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  9. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  10. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  11. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  12. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  13. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  14. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  15. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  16. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  17. E.N. Rumanov “Critical phenomena far from equilibriumPhys. Usp. 56 93–102 (2013)
  18. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  19. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  20. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions