Methodological notes

Eigenmode generation by a given current in anisotropic and gyrotropic media

 a,  b, c
a St. Petersburg State Polytechnical University, Politekhnicheskaya str. 29, St. Petersburg, 195251, Russian Federation
b Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
c New Jersey Institute of Technology, Newark, New Jersey, USA

The theory of eigenmode generation by a given current was developed for a uniform, transparent, anisotropic and gyrotropic medium with a temporal and spatial dispersion. Different approaches were employed to determine the eigenmode dispersion relations and polarization vectors. A close interrelation was traced between the principal values and eigenvectors of the Maxwellian tensor and the properties of the linear eigenmodes of a given medium. The spectral energy density radiated in a given direction in the medium was calculated for different medium modes having different phase velocities and polarizations. Anisotropic factors were derived, which change the eigenmode radiation intensity in comparison with that for an isotropic medium with the same refractive index. Several typical examples were considered.

Fulltext is available at IOP
PACS: 03.50.De, 41.20.Jb, 41.60.−m (all)
DOI: 10.1070/PU2008v051n04ABEH006472
Citation: Toptygin I N, Fleishman G D "Eigenmode generation by a given current in anisotropic and gyrotropic media" Phys. Usp. 51 363–374 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Топтыгин И Н, Флейшман Г Д «Генерация собственных мод заданным током в анизотропных и гиротропных средах» УФН 178 385–396 (2008); DOI: 10.3367/UFNr.0178.200804c.0385

References (37) Cited by (6) Similar articles (20) ↓

  1. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic media54 145–165 (2011)
  2. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate53 595–609 (2010)
  3. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium52 649–654 (2009)
  4. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics16 434–439 (1973)
  5. V.S. Malyshevsky “Is it possible to measure the electromagnetic radiation of an instantly started charge?60 1294–1301 (2017)
  6. Yu.A. Spirichev “On choosing the energy—momentum tensor in electrodynamics and on the Abraham force61 303–306 (2018)
  7. K.Yu. Bliokh, Yu.P. Bliokh “What are the left-handed media and what is interesting about them?47 393–400 (2004)
  8. I.N. Toptygin, K. Levina “Energy—momentum tensor of the electromagnetic field in dispersive media59 141–152 (2016)
  9. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media60 935–947 (2017)
  10. F.V. Ignaovich, V.K. Ignatovich “Optics of anisotropic media55 709–720 (2012)
  11. V.G. Niz’ev “Dipole-wave theory of electromagnetic diffraction45 553–559 (2002)
  12. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiation58 819–827 (2015)
  13. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)62 487–495 (2019)
  14. B.M. Bolotovskii, A.V. Serov “Features of the transition radiation field52 487–493 (2009)
  15. V.P. Kazantsev “An example illustrating the potentiality and peculiarities of a variational approach to electrostatic problems45 325–330 (2002)
  16. K.Yu. Platonov, I.N. Toptygin, G.D. Fleishman “Emission of radiation by particles in media with inhomogeneities and coherent bremsstrahlung33 (4) 289–295 (1990)
  17. G.D. Fleishman “Transition radiation of a relativistic particle moving along a curve34 (1) 86–96 (1991)
  18. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic waves51 355–361 (2008)
  19. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structures54 281–290 (2011)
  20. E.H. Lock “Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities55 1239–1254 (2012)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions