Issues

 / 

2007

 / 

September

  

Methodological notes


Dynamical chaos: systems of classical mechanics


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol\’d-Moser theory, the Poincaré-Birkhoff fixed-point theorem, and the Mel\’nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems — unpredictability, irreversibility, and decay of temporal correlations — are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years — billiards with oscillating boundaries — are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate.

Fulltext pdf (677 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n09ABEH006341
PACS: 05.45.−a, 05.45.Ac (all)
DOI: 10.1070/PU2007v050n09ABEH006341
URL: https://ufn.ru/en/articles/2007/9/d/
000252639900004
2-s2.0-38349081661
2007PhyU...50..939L
Citation: Loskutov A "Dynamical chaos: systems of classical mechanics" Phys. Usp. 50 939–964 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лоскутов А Ю «Динамический хаос. Системы классической механики» УФН 177 989–1015 (2007); DOI: 10.3367/UFNr.0177.200709d.0989

References (189) Cited by (48) Similar articles (20) ↓

  1. A.M. Dykhne, A.A. Snarskii, M.I. Zhenirovskii “Stability and chaos in randomly inhomogeneous two-dimensional media and LC circuitsPhys. Usp. 47 821–828 (2004)
  2. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  3. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  4. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  5. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  6. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  7. E.N. Rumanov “Critical phenomena far from equilibriumPhys. Usp. 56 93–102 (2013)
  8. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  9. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  10. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  11. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  12. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  13. S.V. Vladimirov, Yu.O. Tyshetskiy “On description of a collisionless quantum plasmaPhys. Usp. 54 1243–1256 (2011)
  14. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  15. A.A. Shatskiy, I.D. Novikov, N.S. Kardashev “The Kepler problem and collisions of negative massesPhys. Usp. 54 381–385 (2011)
  16. A.M. Ignatov, A.I. Korotchenko et alOn the interpretation of computer simulation of classical Coulomb plasmaPhys. Usp. 38 109–114 (1995)
  17. V.P. Bykov “Squeezed light and nonclassical motion in mechanicsPhys. Usp. 36 (9) 841–850 (1993)
  18. V.L. Ginzburg “The nature of spontaneous radiationSov. Phys. Usp. 26 713–719 (1983)
  19. V.D. Krivchenkov “Generalized coordinates in quantum mechanicsSov. Phys. Usp. 24 860–863 (1981)
  20. A.A. Andronov, Yu.A. Ryzhov “An infinity of the classical theory of fluctuations in a nondegenerate electron gasSov. Phys. Usp. 21 873–878 (1978)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions