Issues

 / 

2007

 / 

September

  

Methodological notes


Dynamical chaos: systems of classical mechanics


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol\’d-Moser theory, the Poincaré-Birkhoff fixed-point theorem, and the Mel\’nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems — unpredictability, irreversibility, and decay of temporal correlations — are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years — billiards with oscillating boundaries — are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate.

Fulltext pdf (677 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n09ABEH006341
PACS: 05.45.−a, 05.45.Ac (all)
DOI: 10.1070/PU2007v050n09ABEH006341
URL: https://ufn.ru/en/articles/2007/9/d/
000252639900004
2-s2.0-38349081661
2007PhyU...50..939L
Citation: Loskutov A "Dynamical chaos: systems of classical mechanics" Phys. Usp. 50 939–964 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Ëîñêóòîâ À Þ «Äèíàìè÷åñêèé õàîñ. Ñèñòåìû êëàññè÷åñêîé ìåõàíèêè» ÓÔÍ 177 989–1015 (2007); DOI: 10.3367/UFNr.0177.200709d.0989

References (189) Cited by (48) ↓ Similar articles (20)

  1. Yang J, Li Ch et al Int. J. Bifurcation Chaos 33 (14) (2023)
  2. Malkov M, Lemoine M Phys. Rev. E 107 (2) (2023)
  3. Kerr M L, Kheruntsyan K V AAPPS Bull. 33 (1) (2023)
  4. Li Ch, Li Zh et al Symmetry 15 1564 (2023)
  5. Lubchenko D, Savin A Communications In Computer And Information Science Vol. Mathematical Modeling and Supercomputer TechnologiesCoexistence of Dissipative and Conservative Regimes in Unidirectionally Coupled Maps1750 Chapter 13 (2022) p. 160
  6. Lubchenko D O, Savin A V Int. J. Bifurcation Chaos 32 (12) (2022)
  7. Orchard J, Rondoni L et al J. Stat. Mech. 2021 073208 (2021)
  8. Qian M, Qin Zh et al Mechanism And Machine Theory 145 103717 (2020)
  9. Ganiev R F, Reviznikov D L et al J. Mach. Manuf. Reliab. 48 191 (2019)
  10. Ganiev R F, Reviznikov D L et al Dokl. Phys. 64 203 (2019)
  11. Rosanov N N, Vysotina N V J. Exp. Theor. Phys. 128 840 (2019)
  12. Petrov L F Comput. Math. And Math. Phys. 58 384 (2018)
  13. Galia M V C, Oliveira D F M, Leonel E D Physica A: Statistical Mechanics And Its Applications 465 66 (2017)
  14. Vinokurova V D, Rosanov N N Opt. Spectrosc. 122 826 (2017)
  15. Rosanov N N, Vysotina N V Opt. Spectrosc. 123 918 (2017)
  16. Aslanov V S Rigid Body Dynamics for Space Applications (2017) p. 25
  17. Vinokurova V D, Rozanov N N, Fedorov E G Tech. Phys. 61 965 (2016)
  18. Aslanov V S, Ledkov A S Journal Of Guidance, Control, And Dynamics 39 1834 (2016)
  19. Rosanov N N Opt. Spectrosc. 119 1000 (2015)
  20. Kuzovlev Yu E Uspekhi Fizicheskikh Nauk 185 773 (2015) [Kuzovlev Yu E Phys.-Usp. 58 719 (2015)]
  21. Kryuchkov S V, Kukhar’ E I Laser Phys. 25 095901 (2015)
  22. Rosanov N N, Vysotina N V J. Opt. Soc. Am. B 32 B20 (2015)
  23. Kryuchkov S V, Kukhar’ E I Phys. Wave Phen. 23 21 (2015)
  24. Rosanov N N, Vysotina N V Phys. Rev. A 91 (1) (2015)
  25. Kryuchkov S V, Kukhar’ E I 25 (7) (2015)
  26. Rosanov N N Opt. Spectrosc. 119 124 (2015)
  27. Kryuchkov S V, Kukhar’ E I, Zav’yalov D V Physica E: Low-dimensional Systems And Nanostructures 56 246 (2014)
  28. Rosanov N N, Sochilin G B et al Phil. Trans. R. Soc. A. 372 20140012 (2014)
  29. Vinokurova V D, Rosanov N N Tech. Phys. Lett. 40 946 (2014)
  30. Rosanov N N, Vysotina N V Advanced Photonics, (2014) p. NM2A.6
  31. Rosanov N N, Vysotina N V Jetp Lett. 100 508 (2014)
  32. Magnitskii N A Comput Math Model 24 221 (2013)
  33. Norman G E, Stegailov V V Math Models Comput Simul 5 305 (2013)
  34. Kryuchkov S V, Kukhar’ E I, Zav’yalov D V Superlattices And Microstructures 64 427 (2013)
  35. Kapranov S V, Kouzaev G A Physica D: Nonlinear Phenomena 252 1 (2013)
  36. Marov M Ya, Kolesnichenko A V Astrophysics And Space Science Library Vol. Turbulence and Self-OrganizationTurbulent Chaos and Self-Organization in Cosmic Natural Media389 Chapter 1 (2013) p. 1
  37. Loskutov A, Chichigina O et al EPL 98 10006 (2012)
  38. Krasnova A K, Chichigina O A Moscow Univ. Phys. 67 48 (2012)
  39. Leonel E D, Dettmann C P Physics Letters A 376 1669 (2012)
  40. MIKOSS I, GARCÍA P Int. J. Mod. Phys. B 25 673 (2011)
  41. Budaev V P, Savin S P, Zelenyi L M Uspekhi Fizicheskikh Nauk 181 905 (2011)
  42. Loskutov A Yu Uspekhi Fizicheskikh Nauk 180 1305 (2010)
  43. Ryabov A B, Loskutov A J. Phys. A: Math. Theor. 43 125104 (2010)
  44. Petrov B E J. Commun. Technol. Electron. 55 72 (2010)
  45. Loskutov A, Ryabov A, Leonel E D Physica A: Statistical Mechanics And Its Applications 389 5408 (2010)
  46. Manchein C, Beims M W, Leonel E D Mathematical Problems In Engineering 2009 (1) (2009)
  47. Loskutov A, Leonel E D Mathematical Problems In Engineering 2009 (1) (2009)
  48. Kalyakin L A, Kalyakin L A Usp. Mat. Nauk 63 3 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions