Issues

 / 

2007

 / 

April

  

Oral issue of the journal “Uspekhi Fizicheskikh Nauk”


Ginzburg’s invention of undulators and their role in modern synchrotron radiation sources and free electron lasers


Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation

Undulators — periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons — are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron Х-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world’ s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work.

Fulltext pdf (373 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n04ABEH006237
PACS: 01.10.Fv, 07.85.−m, 07.85.Qe, 41.60.Cr (all)
DOI: 10.1070/PU2007v050n04ABEH006237
URL: https://ufn.ru/en/articles/2007/4/f/
000248752700006
2-s2.0-34547851673
2007PhyU...50..368K
Citation: Kulipanov G N "Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers" Phys. Usp. 50 368–376 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кулипанов Г Н «Изобретение В.Л. Гинзбургом ондуляторов и их роль в современных источниках синхротронного излучения и лазерах на свободных электронах» УФН 177 384–393 (2007); DOI: 10.3367/UFNr.0177.200704f.0384

References (27) Cited by (19) ↓ Similar articles (10)

  1. Zhang D, Zeng Yu et al Photonics Insights 2 R07 (2023)
  2. Korol A, Solov’yov A V Novel Lights Sources Beyond Free Electron Lasers Particle Acceleration And Detection Chapter 7 (2022) p. 181
  3. Kovalchuk M V, Blagov A E et al Crystallogr. Rep. 67 676 (2022)
  4. Albà A, Seok J et al Computer Physics Communications 280 108475 (2022)
  5. Fetisov G V Phys.-Usp. 63 2 (2020)
  6. Obodovskiy I Radiation (2019) p. 275
  7. Lider V V Phys.-Usp. 61 980 (2018)
  8. Romanov V Greenhouse Gases and Clay Minerals Green Energy And Technology Chapter 5 (2018) p. 77
  9. Lider V V Uspekhi Fizicheskikh Nauk 188 (10) (2018)
  10. Seddon E A, Clarke J A et al Rep. Prog. Phys. 80 115901 (2017)
  11. Tóth G, Tibai Z et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 369 2 (2016)
  12. Zhukovsky K V Moscow Univ. Phys. 70 93 (2015)
  13. Vinokurov N A, Levichev E B Uspekhi Fizicheskikh Nauk 185 917 (2015) [Vinokurov N A, Levichev E B Phys.-Usp. 58 850 (2015)]
  14. Kuzina S I, Tokarev S V et al Russ Chem Bull 62 255 (2013)
  15. Korol A V, Solov’yov A V, Greiner W Springer Series On Atomic, Optical, And Plasma Physics Vol. Channeling and Radiation in Periodically Bent CrystalsStimulated Emission from CU69 Chapter 8 (2013) p. 195
  16. Kurin V G, Demchenko M Yu, Senkevich Y B 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, (2013) p. 400
  17. Socol Y Optics & Laser Technology 46 111 (2013)
  18. Lider V V Crystallogr. Rep. 57 628 (2012)
  19. McNeil B W J, Thompson N R Nature Photon 4 814 (2010)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions