Issues

 / 

2005

 / 

July

  



Deep Impact experiment: possible observable effects

 a, b, , , , ,  b
a Max-Planck Institute for Extraterrestrial Physics, Postfach 1312, Giessenbechstrasse 85748 , Garching, 85741, Germany
b Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

A hypervelocity collision of a metal impactor and the nucleus of the Tempel 1 comet is to be carried out in July 2005 in the framework of the Deep Impact active experiment in space. This paper discusses certain observable consequences of this impact. Numerical simulation of the impact process made it possible to evaluate the diameter of the impact-produced crater as a function of the initial density and porosity of the cometary nucleus. A substantial part of the shockwave-compressed cometary material that is evaporated at the unloading stage may become heated to temperatures on the order of (1-2) X 104 K. A change in the chemical composition of the hot vapor in the process of its expansion was computed using a model elemental composition of the cometary nucleus; this may prove useful for determining the parameters of the flash induced by the impact in the visible optical, UV, IR, and radio wavelength bands.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.1070/PU2005v048n07ABEH004489
PACS: 47.40.−x, 62.50.+p, 82.20.Wt, 96.35.−j, 96.50.Gn (all)
DOI: 10.1070/PU2005v048n07ABEH004489
URL: https://ufn.ru/en/articles/2005/7/e/
Citation: Klumov B A, Kim V V, Lomonosov I V, Sultanov V G, Shutov A V, Fortov V E "Deep Impact experiment: possible observable effects" Phys. Usp. 48 733–742 (2005)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:   ,   ,   ,   ,   ,    «   Deep Impact» 175 767–777 (2005); DOI: 10.3367/UFNr.0175.200507f.0767

References (23) ↓ Cited by (9)

  1. Safronov V S Evolyutsiya Doplanetnogo Oblaka i Obrazovanie Zemli i Planet (M.: Nauka, 1969)
  2. Sagdeev R Z et al. Adv. Space Res. 5 (12) 95 (1985); http://iki.cosmos.ru/ssp/vega.html; http://www.laspace.ru/rus/vega.php
  3. Klumov B A i dr. Usp. Fiz. Nauk 164 617 (1994); Klumov B A et al. Phys. Usp. 37 577 (1994); Fortov V E i dr. Usp. Fiz. Nauk 166 391 (1996); Fortov V E et al. Phys. Usp. 39 363 (1996)
  4. Asphaug E, Benz W Icarus 121 225 (1996)
  5. Weissman P R Nature 320 242 (1986); Weidenschilling S J Nature 368 721 (1994)
  6. http://stardust.jpl.nasa.gov/photo/cometwild2.html
  7. Berezhnoi A A, Klumov B A Pis’ma ZhETF 68 150 (1998); Klumov B A, Berezhnoi A A Adv. Space Res. 30 1875 (2002)
  8. A’Hearn M F, Belton M J S, Delamere A, Blume W H "Deep Impact: a large-scale active experiment on a cometary nucleus" Space Sci. Rev. (2005), in press
  9. http://deepimpact.jpl.nasa.gov/tech/instruments.html
  10. Fernández Y R et al. Icarus 164 481 (2003)
  11. Binzel R P et al. Planet. Space Sci. 51 443 (2003)
  12. Belton M J S, A’Hearn M F Adv. Space Res. 24 1167 (1999)
  13. Ishibashi T, Fujiwara A, Fujii N Jpn. J. Appl. Phys. 29 2543 (1990)
  14. Kadono T Planet. Space Sci. 47 305 (1999)
  15. Ahrens T J, O’Keefe J D Int. J. Impact Eng. 5 13 (1987)
  16. Toon O B et al. Rev. Geophys. 35 41 (1997)
  17. Artemieva N A, Shuvalov V V Deep Sea Res. II 49 959 (2002)
  18. Bushman A V, Kanel’ G I, Ni A L, Fortov V E Teplofizika i Dinamika Intensivnykh Impul’snykh Vozdeistvii (Chernogolovka: OIKhF AN SSSR, 1988)
  19. Fortov V E et al. Nucl. Sci. Eng. 123 169 (1996)
  20. Cottin H, Gazeau M C, Raulin F Planet. Space Sci. 47 1141 (1999)
  21. Zel’dovich Ya B, Raizer Yu P Fizika Udarnykh Voln i Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (M.: Nauka, 1963)
  22. Berezhnoy A A, Hasebe N, Hiramoto T, Klumov B A Publ. Astron. Soc. Jpn. 55 859 (2003)
  23. Anders E, Ebihara M Geochim. Cosmochim. Acta 46 2363 (1982)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions