Issues

 / 

2004

 / 

April

  

Reviews of topical problems


Feasibility of spherical fusion target compression under two-beam laser irradiation


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The results of investigations of the laser radiation interaction with low-density foamy materials are presented. When such materials are used as the energy absorber in spherical targets with thermonuclear fuel in the laser-driven fusion (LF) problem, the physics of energy absorption and transfer in these media permits a significant reduction of the number of irradiating laser beams (down to two beams) in the implementation of spherical target compression. Traditional irradiation (direct and indirect) schemes involve the use of a large number (100-200) of irradiating beams, which is extremely difficult to realize in a fusion reactor.

Fulltext pdf (759 KB)
Fulltext is also available at DOI: 10.1070/PU2004v047n04ABEH001741
PACS: 28.52.Cx, 52.57.−z (all)
DOI: 10.1070/PU2004v047n04ABEH001741
URL: https://ufn.ru/en/articles/2004/4/c/
000223560800003
2004PhyU...47..359R
Citation: Rozanov V B "Feasibility of spherical fusion target compression under two-beam laser irradiation" Phys. Usp. 47 359–370 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Розанов В Б «О возможности сферического сжатия мишеней с термоядерным горючим при использовании для облучения двух лазерных пучков» УФН 174 371–382 (2004); DOI: 10.3367/UFNr.0174.200404c.0371

References (32) Cited by (12) Similar articles (20) ↓

  1. V.E. Fortov, D.H.H. Hoffmann, B.Yu. Sharkov “Intense ion beams for generating extreme states of matter51 109–131 (2008)
  2. I.I. Metelskii, V.F. Kovalev, V.Yu. Bychenkov “Relativistically nonlinear resonant absorption and harmonic generation of electromagnetic radiation in an inhomogeneous plasma”, accepted
  3. B.B. Kadomtsev “Plasma instability and controlled thermonuclear reactions10 127–130 (1967)
  4. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physics53 51–76 (2010)
  5. A.M. Prokhorov, S.I. Anisimov, P.P. Pashinin “Laser thermonuclear fusion19 547–560 (1976)
  6. E.G. Abramochkin, V.G. Volostnikov “Spiral light beams47 1177–1203 (2004)
  7. O.V. Rudenko, O.A. Sapozhnikov “Self-action effects for wave beams containing shock fronts47 907–922 (2004)
  8. S.V. Chekalin, V.P. Kandidov “From self-focusing light beams to femtosecond laser pulse filamentation56 123–140 (2013)
  9. I.A. Baranov, Yu.V. Martynenko et alInelastic sputtering of solids by ions31 1015–1034 (1988)
  10. V.L. Vinetskii, N.V. Kukhtarev et alDynamic self-diffraction of coherent light beams22 742–756 (1979)
  11. G.N. Makarov “Cluster temperature. Methods for its measurement and stabilization51 319–353 (2008)
  12. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  13. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materials57 970–989 (2014)
  14. A.A. Ishchenko, S.A. Aseev et alUltrafast electron diffraction and electron microscopy: present status and future prospects57 633–669 (2014)
  15. G.N. Makarov “Low energy methods of molecular laser isotope separation58 670–700 (2015)
  16. V.V. Brazhkin “Ultrahard nanomaterials: myths and reality63 523–544 (2020)
  17. D.K. Belashchenko “Does the embedded atom model have predictive power?63 1161–1187 (2020)
  18. N.A. Veretenov, N.N. Rosanov, S.V. Fedorov “Laser solitons: topological and quantum phenomena65 131–162 (2022)
  19. G.I. Budker, A.N. Skrinskii “Electron cooling and new possibilities in elementary particle physics21 277–296 (1978)
  20. V.S. Berezinskii, G.T. Zatsepin “Possible experiments with very high energy cosmic neutrinos: the Dumand project20 361–380 (1977)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions