Reviews of topical problems

Feasibility of spherical fusion target compression under two-beam laser irradiation

Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The results of investigations of the laser radiation interaction with low-density foamy materials are presented. When such materials are used as the energy absorber in spherical targets with thermonuclear fuel in the laser-driven fusion (LF) problem, the physics of energy absorption and transfer in these media permits a significant reduction of the number of irradiating laser beams (down to two beams) in the implementation of spherical target compression. Traditional irradiation (direct and indirect) schemes involve the use of a large number (100-200) of irradiating beams, which is extremely difficult to realize in a fusion reactor.

Fulltext is available at IOP
PACS: 28.52.Cx, 52.57.−z (all)
DOI: 10.1070/PU2004v047n04ABEH001741
Citation: Rozanov V B "Feasibility of spherical fusion target compression under two-beam laser irradiation" Phys. Usp. 47 359–370 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Розанов В Б «О возможности сферического сжатия мишеней с термоядерным горючим при использовании для облучения двух лазерных пучков» УФН 174 371–382 (2004); DOI: 10.3367/UFNr.0174.200404c.0371

References (32) Cited by (11) Similar articles (16) ↓

  1. V.E. Fortov, D.H.H. Hoffmann, B.Yu. Sharkov “Intense ion beams for generating extreme states of matter51 109–131 (2008)
  2. B.B. Kadomtsev “Plasma instability and controlled thermonuclear reactions10 127–130 (1967)
  3. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physics53 51–76 (2010)
  4. O.V. Rudenko, O.A. Sapozhnikov “Self-action effects for wave beams containing shock fronts47 907–922 (2004)
  5. E.G. Abramochkin, V.G. Volostnikov “Spiral light beams47 1177–1203 (2004)
  6. S.V. Chekalin, V.P. Kandidov “From self-focusing light beams to femtosecond laser pulse filamentation56 123–140 (2013)
  7. A.M. Prokhorov, S.I. Anisimov, P.P. Pashinin “Laser thermonuclear fusion19 547–560 (1976)
  8. G.N. Makarov “Cluster temperature. Methods for its measurement and stabilization51 319–353 (2008)
  9. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  10. A.A. Ishchenko, S.A. Aseev et alUltrafast electron diffraction and electron microscopy: present status and future prospects57 633–669 (2014)
  11. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materials57 970–989 (2014)
  12. G.N. Makarov “Low energy methods of molecular laser isotope separation58 670–700 (2015)
  13. V.V. Brazhkin “Ultrahard nanomaterials: myths and reality63 523–544 (2020)
  14. D.K. Belashchenko “Does the embedded atom model have predictive power?63 1161–1187 (2020)
  15. V.S. Berezinskii, G.T. Zatsepin “Possible experiments with very high energy cosmic neutrinos: the Dumand project20 361–380 (1977)
  16. V.L. Ermolaev “Energy transfer in organic systems involving the triplet state III. Rigid solutions and crystals6 333–358 (1963)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions