Issues

 / 

2002

 / 

November

  

Methodological notes


An invariant formulation of the potential integration method for the vortical equation of motion of a material point


Alexeev Nizhnii Novgorod State Technical University, Minina str. 24, Nizhnii Novgorod, 603600, Russian Federation

A relativistic procedure for deriving the kinetic part of the generalized Euler equation is proposed as an argument to justify the application of the vortical equation of motion to the solution of classical discrete dynamics problems. An invariant formulation of the potential integration method for the vortical equation of motion is given for a definite class of two-dimensional motions. To demonstrate the efficiency of the method, a number of well-known theorems on the dynamics of a material point are proved. A new result of the study is the fact that zero-energy hyperelliptic motions are related to the field of ’multiplicative’ type forces.

Fulltext pdf (266 KB)
Fulltext is also available at DOI: 10.1070/PU2002v045n11ABEH001171
PACS: 45.20.−d, 45.50.Pk (all)
DOI: 10.1070/PU2002v045n11ABEH001171
URL: https://ufn.ru/en/articles/2002/11/c/
000181345500003
Citation: Kukushkin A V "An invariant formulation of the potential integration method for the vortical equation of motion of a material point" Phys. Usp. 45 1153–1164 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кукушкин А В «Инвариантная редакция потенциального метода интегрирования вихревого уравнения движения для материальной точки» УФН 172 1271–1282 (2002); DOI: 10.3367/UFNr.0172.200211c.1271

References (14) ↓ Similar articles (11)

  1. Arzhanykh I S Pole Impul’sov (Field of Momenta, Tashkent: Nauka, 1965)
  2. Kozlov V V Obshchaya Teoriya Vikhreî (General Theory of Vortices, Ser. "Regulyarnaya i Khaoticheskaya Dinamik"’, Vol. 4, Izhevsk: Izd. Dom "Udmurtskiî Universitet", 1998)
  3. Arzhanykh I S Opyt Klassifikatsii Matematicheskikh Issledovaniî: Kategorii Matematicheskogo Poznaniya (Attempt at Classifying Mathematical Studies: Mathematical Categories of Knowledge, Tashkent: FAN, 1982)
  4. Morse P M, Feshbach H Methods of Theoretical Physics Pt. 1 (New York: McGraw-Hill, 1953) [Translated into Russian (Moscow: IL, 1958)]
  5. Arnold V I Matematicheskie Metody Klassicheskoî Mekhaniki (Mathematical Methods of Classical Mechanics, Moscow: Nauka, 1989) [Translated into English (New York: Springer, 1997)]
  6. Pauli W Relativitätstheorie (Encyklopädie der mathematischen Wissenschaften, Bd. 19, Ed. A Sommerfeld, Leipzig: Teubner, 1921) [Translated into English: Theory of Relativity (New York: Dover Publ., 1981)]; [Translated into Russian (Moscow: Nauka, 1983)]
  7. Cartan E Leçons sur les Invariants Intégraux (Paris: A. Hermann & Fils, 1922) [Translated into Russian: Integral’nye Invarianty (Integral Invariants, Moscow-Leningrad: Gostekhizdat, 1940)]
  8. Arnol’d V I Gyuîgens i Barrou, N’yuton i Guk (Huygens and Barrow, Newton and Hooke, Moscow: Nauka, 1989) [Translated into English (Basel: Birkhäuser Verlag, 1990)]
  9. Appell P E Traité de Mécanique Rationnelle (Paris: Gauthier-Villars, 1926-1933) [Translated into Russian: Teoreticheskaya Mekhanika (Theoretical Mechanics, Moscow: Fizmatgiz, 1960)]
  10. Duboshin G N Nebesnaya Mekhanika. Osnovnye Zadachi i Metody (Celestial Mechanics. Basic Problems and Methods, Moscow: Fizmatgiz, 1963)
  11. Korn G A, Korn T M Mathematical Handbook for Scientist and Engineers: Definitions, Theorems, and Formulas for Reference and Review 2nd ed. (New York: McGraw-Hill, 1968) [Translated into Russian (Moscow: Nauka, 1973)]
  12. Bateman H, Erdélyi A Higher Transcendental Functions (New York: McGraw-Hill, 1953-1955) [Translated into Russian (Moscow: Nauka, 1967)]
  13. Charlier C L Die Mechanik des Himmels (Berlin: W. de Gruyter & Co., 1927) [Translated into Russian: Nebesnaya Mekhanika (Celestial Mechanics, Moscow: Nauka, 1966)]
  14. Kil’chevskiî N A et al. Analiticheskaya Mekhanika Kontinual’nykh Sistem (Analytic Mechanics of Continual Systems, Kiev: Naukova Dumka, 1979)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions