Issues

 / 

2002

 / 

November

  

Methodological notes


An invariant formulation of the potential integration method for the vortical equation of motion of a material point


Alexeev Nizhnii Novgorod State Technical University, Minina str. 24, Nizhnii Novgorod, 603600, Russian Federation

A relativistic procedure for deriving the kinetic part of the generalized Euler equation is proposed as an argument to justify the application of the vortical equation of motion to the solution of classical discrete dynamics problems. An invariant formulation of the potential integration method for the vortical equation of motion is given for a definite class of two-dimensional motions. To demonstrate the efficiency of the method, a number of well-known theorems on the dynamics of a material point are proved. A new result of the study is the fact that zero-energy hyperelliptic motions are related to the field of ’multiplicative’ type forces.

Fulltext pdf (266 KB)
Fulltext is also available at DOI: 10.1070/PU2002v045n11ABEH001171
PACS: 45.20.−d, 45.50.Pk (all)
DOI: 10.1070/PU2002v045n11ABEH001171
URL: https://ufn.ru/en/articles/2002/11/c/
000181345500003
Citation: Kukushkin A V "An invariant formulation of the potential integration method for the vortical equation of motion of a material point" Phys. Usp. 45 1153–1164 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кукушкин А В «Инвариантная редакция потенциального метода интегрирования вихревого уравнения движения для материальной точки» УФН 172 1271–1282 (2002); DOI: 10.3367/UFNr.0172.200211c.1271

References (14) Similar articles (11) ↓

  1. A.V. Kukushkin “A technique for solving the wave equation and prospects for physical applications arising therefromPhys. Usp. 36 (2) 81–93 (1993)
  2. A.A. Shatskiy, I.D. Novikov, N.S. Kardashev “The Kepler problem and collisions of negative massesPhys. Usp. 54 381–385 (2011)
  3. A.G. Shalashov “Can we refer to Hamilton equations for an oscillator with friction?Phys. Usp. 61 1082–1088 (2018)
  4. A.V. Kukushkin, A.A. Rukhadze, K.Z. Rukhadze “On the existence conditions for a fast surface wavePhys. Usp. 55 1124–1133 (2012)
  5. A.V. Burenin “Symmetry of quantum intramolecular dynamicsPhys. Usp. 45 753–776 (2002)
  6. A.V. Burenin “On the importance of the Born-Oppenheimer approximation in intramolecular dynamicsPhys. Usp. 53 713–724 (2010)
  7. V.L. Kraĭnov, L.P. Presnyakov “Phase functions for potential scattering in opticsPhys. Usp. 36 (7) 621–627 (1993)
  8. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  9. A.I. Frank “On the properties of the "potential" neutron dispersion law in a refractive mediumPhys. Usp. 61 900–901 (2018)
  10. V.Yu. Shishkov, E.S. Andrianov et alRelaxation of interacting open quantum systemsPhys. Usp. 62 510–523 (2019)
  11. V.I. Alshits, V.N. Lyubimov “Plasmon-polariton at the interface of a uniaxial crystal and a metal: real dispersion equation and its analysisPhys. Usp. 66 90–102 (2023)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions