Reviews of topical problems

A cluster model for the polymer amorphous state

 a,  b
a Kabardino-Balkarian State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russian Federation
b Moscow State Open University, ul. P. Korchagina 22, Moscow, 129805, Russian Federation

Some aspects of local order in the amorphous state of a glassy polymer are discussed. The physical principles behind a cluster model involving the new concept of a structural defect are presented. A comparative analysis of three major approaches to describing the amorphous state of a polymer is given. It is shown that the cluster model is in reality a unified model which presents a new explanation for many qualitative results produced in the past on polymer structure and processes involved and which, unlike previous approaches, has the advantage of being quantitative. Possible future directions in polymer structure studies are outlined.

Fulltext pdf (668 KB)
Fulltext is also available at DOI: 10.1070/PU2001v044n07ABEH000832
PACS: 61.41.+e, 61.43.−j, 61.43.Bn, 61.43.Hv, 61.46.+w (all)
DOI: 10.1070/PU2001v044n07ABEH000832
Citation: Kozlov G V, Novikov V U "A cluster model for the polymer amorphous state" Phys. Usp. 44 681–724 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Козлов Г В, Новиков В У «Кластерная модель аморфного состояния полимеров» УФН 171 717–764 (2001); DOI: 10.3367/UFNr.0171.200107b.0717

References (327) Cited by (58) Similar articles (20) ↓

  1. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocomposites58 33–60 (2015)
  2. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processes38 347–384 (1995)
  3. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materials50 225–261 (2007)
  4. N.N. Korst, L.I. Antsiferova “Study of slow molecular motions by stable-radical EPR21 761–778 (1978)
  5. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics47 749–788 (2004)
  6. B.M. Smirnov “Cluster plasma43 453–491 (2000)
  7. D.K. Belashchenko “Diffusion mechanisms in disordered systems: computer simulation42 297–319 (1999)
  8. B.M. Smirnov “Fractal clusters29 481–505 (1986)
  9. R. Folk, Yu. Holovatch, T. Yavorskii “Critical exponents of a three-dimensional weakly diluted quenched Ising model46 169–191 (2003)
  10. A.N. Lachinov, N.V. Vorob’eva “Electronics of thin wideband polymer layers49 1223–1238 (2006)
  11. A.I. Gusev “Effects of the nanocrystalline state in solids41 49–76 (1998)
  12. B.M. Smirnov “Processes in plasma and gases involving clusters40 1117–1147 (1997)
  13. Yu.E. Lozovik, A.M. Popov “Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones40 717–737 (1997)
  14. V.A. Gritsenko “Atomic structure of the amorphous nonstoichiometric silicon oxides and nitrides51 699–708 (2008)
  15. B.M. Smirnov “Processes involving clusters and small particles in a buffer gas54 691–721 (2011)
  16. V.V. Brazhkin, A.G. Lyapin “Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth’s inner core43 493–508 (2000)
  17. A.V. Eletskii “Endohedral structures43 111–137 (2000)
  18. B.M. Smirnov “Generation of cluster beams46 589–628 (2003)
  19. A.V. Eletskii “Carbon nanotubes40 899–924 (1997)
  20. B.I. Shklovskii, A.L. Éfros “Percolation theory and conductivity of strongly inhomogeneous media18 845–862 (1975)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions