Reviews of topical problems

Problems of probabilistic topology: the statistics of knots and non-commutative random walks

Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation

This paper reviews the state of affairs in a modern branch of mathematical physics called probabilistic topology. In particular we consider the following problems: (i) we stimate the probability of trivial knot formation on a lattice using the Kauffman algebraic invariants and show the connection of this problem with the thermodynamic properties of 2D disordered Potts model; (ii) we investigate the limiting behavior of random walks in multiconnected spaces and on non-commutative groups related to knot theory. We discuss the application of the above-mentioned problems in the statistical physics of polymer chains. On the basis of non-commutative probability theory we derive some new results in the statistical physics of entangled polymer chains which unite rigorous mathematical facts with intuitive physical arguments.

Fulltext is available at IOP
PACS: 02.40.Re, 02.50.Cw, 36.20.Ey (all)
DOI: 10.1070/PU1998v041n04ABEH000382
Citation: Nechaev S K "Problems of probabilistic topology: the statistics of knots and non-commutative random walks" Phys. Usp. 41 313–347 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Нечаев С К «Проблемы вероятностной топологии: статистика узлов и некоммутативных случайных блужданий» УФН 168 369–405 (1998); DOI: 10.3367/UFNr.0168.199804a.0369

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions