Issues

 / 

1998

 / 

March

  

Reviews of topical problems


The Benard-Marangoni thermocapillary-instability problem


Universite des Sciences et Technologies de Lille1, U.F.R.de Mathematiques Pures et Appliquees, Department de Mecanique Fondamentale, Batiment M 3, Villeneuve d’Ascq Cedex, 59655, France

Physically, there are two main mechanisms responsible for driving the instability in the coupled buoyancy (Benard) and thermocapillary (Marangoni) convection problem for a weakly expansible viscous liquid layer bounded from below by a heated solid surface and on the top by a free surface subject to a temperature-dependent surface tension. The first mechanism is density variation generated by the thermal expansion of the liquid; the second results from the surface-tension gradients due to temperature fluctuations along the upper free-surface. In the present paper we consider only the second effect as in the Benard experiments [the so-called Benard-Marangoni (BM) problem]. Indeed, for a thin layer we show that it is not consistent to consider both effects simultaneously, and we formulate an alternative concerning the role of buoyancy. In fact, it is necessary to consider two fundamentally distinct problems: the classical shallow-convection problem for a non-deformable upper surface with partial account of the Marangoni effect (the RBM problem), and the full BM problem for a deformable free surface without the buoyancy effect. We shall be mostly concerned with the thermocapillary BM instabilities problem on a free-falling vertical film, since most experiments and theories have focused on this (in fact, wave dynamics on an inclined plane is quite analogous). For a thin film we consider three main situations in relation to the magnitude of the characteristic Reynolds number (Re) and we derive various model equations. These model equations are analyzed from various points of view but the central intent of this paper is to elucidate the role of the Marangoni number on the evolution of the free surface in space and time. Finally, some recent numerical results are presented.

Fulltext pdf (542 KB)
Fulltext is also available at DOI: 10.1070/PU1998v041n03ABEH000374
PACS: 44.25.+f, 44.30.+v, 47.10.+g, 47.27.+i (all)
DOI: 10.1070/PU1998v041n03ABEH000374
URL: https://ufn.ru/en/articles/1998/3/b/
000073306100002
Citation: Zeytounian R Kh "The Benard-Marangoni thermocapillary-instability problem" Phys. Usp. 41 241–267 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Зейтунян Р Х «Проблема термокапиллярной неустойчивости Бенара-Марангони» УФН 168 259–286 (1998); DOI: 10.3367/UFNr.0168.199803b.0259

References (85) Cited by (47) Similar articles (20) ↓

  1. A.V. Getling “Formation of spatial structures in Rayleigh—Bénard convectionSov. Phys. Usp. 34 (9) 737–776 (1991)
  2. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutionsPhys. Usp. 55 356–381 (2012)
  3. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particlesPhys. Usp. 59 109–120 (2016)
  4. A.M. Fridman “Prediction and discovery of extremely strong hydrodynamic instabilities due to a velocity jump: theory and experimentsPhys. Usp. 51 213–229 (2008)
  5. L.A. Bol’shov, P.S. Kondratenko, V.F. Strizhov “Natural convection in heat-generating fluidsPhys. Usp. 44 999–1016 (2001)
  6. L.T. Adzhemyan, N.V. Antonov, A.N. Vasil’ev “Quantum field renormalization group in the theory of fully developed turbulencePhys. Usp. 39 1193–1219 (1996)
  7. I.A. Vasil’eva “Stationary radiation of objects with scattering mediaPhys. Usp. 44 1255–1282 (2001)
  8. E.D. Eidel’man “Excitation of an electric instability by heatingPhys. Usp. 38 1231–1246 (1995)
  9. S.K. Betyaev “Hydrodynamics: problems and paradoxesPhys. Usp. 38 287–316 (1995)
  10. G.V. Rozenberg “Absorption spectroscopy of dispersed materialsSov. Phys. Usp. 2 666–698 (1959)
  11. M.F. Sarry “Theoretical calculation of equations of state: analytical resultsPhys. Usp. 42 991–1015 (1999)
  12. F.Kh. Mirzoev, V.Ya. Panchenko, L.A. Shelepin “Laser control processes in solidsPhys. Usp. 39 1–29 (1996)
  13. M.A. Liberman, B. Johansson “Properties of matter in ultrahigh magnetic fields and the structure of the surface of neutron starsPhys. Usp. 38 117–136 (1995)
  14. V.M. Rysakov “Acoustoelectronic instability in piezosemiconductorsSov. Phys. Usp. 34 (12) 1027–1046 (1991)
  15. V.G. Boiko, Kh.I. Mogel’ et alFeatures of metastable states in liquid-vapor phase transitionsSov. Phys. Usp. 34 (2) 141–159 (1991)
  16. M.V. Kurik, O.D. Lavrentovich “Defects in liquid crystals: homotopy theory and experimental studiesSov. Phys. Usp. 31 196–224 (1988)
  17. M.V. Kuznetsov, A.S. Razinkin, A.L. Ivanovskii “Oxide nanostructures on a Nb surface and related systems: experiments and ab initio calculationsPhys. Usp. 53 995–1014 (2010)
  18. A.V. Bushman, V.E. Fortov “Model equations of stateSov. Phys. Usp. 26 465–496 (1983)
  19. K.P. Belov, V.I. Sokolov “Antiferromagnetic garnetsSov. Phys. Usp. 20 149–166 (1977)
  20. N.V. Karlov, A.M. Prokhorov “Selective processes induced by resonance laser radiation at the phase boundary of two mediaSov. Phys. Usp. 20 721–735 (1977)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions