Reviews of topical problems

The Benard-Marangoni thermocapillary-instability problem

Universite des Sciences et Technologies de Lille1, Mathematiques Pures et Appliquees, Department de Mecanique Fondamentale, Batiment M3, Villeneuve dAscq Cedex, 59655, France

Physically, there are two main mechanisms responsible for driving the instability in the coupled buoyancy (Benard) and thermocapillary (Marangoni) convection problem for a weakly expansible viscous liquid layer bounded from below by a heated solid surface and on the top by a free surface subject to a temperature-dependent surface tension. The first mechanism is density variation generated by the thermal expansion of the liquid; the second results from the surface-tension gradients due to temperature fluctuations along the upper free-surface. In the present paper we consider only the second effect as in the Benard experiments [the so-called Benard-Marangoni (BM) problem]. Indeed, for a thin layer we show that it is not consistent to consider both effects simultaneously, and we formulate an alternative concerning the role of buoyancy. In fact, it is necessary to consider two fundamentally distinct problems: the classical shallow-convection problem for a non-deformable upper surface with partial account of the Marangoni effect (the RBM problem), and the full BM problem for a deformable free surface without the buoyancy effect. We shall be mostly concerned with the thermocapillary BM instabilities problem on a free-falling vertical film, since most experiments and theories have focused on this (in fact, wave dynamics on an inclined plane is quite analogous). For a thin film we consider three main situations in relation to the magnitude of the characteristic Reynolds number (Re) and we derive various model equations. These model equations are analyzed from various points of view but the central intent of this paper is to elucidate the role of the Marangoni number on the evolution of the free surface in space and time. Finally, some recent numerical results are presented.

Fulltext is available at IOP
PACS: 44.25.+f, 44.30.+v, 47.10.+g, 47.27.+i (all)
DOI: 10.1070/PU1998v041n03ABEH000374
Citation: Zeytounian R Kh "The Benard-Marangoni thermocapillary-instability problem" Phys. Usp. 41 241–267 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:    « -» 168 259–286 (1998); DOI: 10.3367/UFNr.0168.199803b.0259

References (85) Cited by (39) ↓ Similar articles (17)

  1. Andreev V K, Lemeshkova E N J. Phys.: Conf. Ser. 1679 022047 (2020)
  2. Andreev V K, Lemeshkova E N Comput. Math. And Math. Phys. 60 844 (2020)
  3. Radkevich E V, Lukashev E A, Vasil’yeva O A J Math Sci 244 294 (2020)
  4. Lemeshkova E N 310 (2019)
  5. Bekezhanova V B, Goncharova O N Microgravity Sci. Technol. 31 357 (2019)
  6. Aleksandrov V A, Kopysov S P, Tonkov L E Tech. Phys. 64 939 (2019)
  7. Lemeshkova E N Fluid Dyn 54 33 (2019)
  8. Bekezhanova V B, Shefer I A Microgravity Sci. Technol. 30 543 (2018)
  9. Andreev V K Bulletin Of The SUSU. MMP 11 31 (2018)
  10. Bekezhanova V B, Goncharova O N Applied Mathematical Modelling 62 145 (2018)
  11. Shkadov V Ya, Beloglazkin A N Moscow Univ. Mech. Bull. 72 133 (2017)
  12. Lukashev E A, Radkevich E V et al (AIP Conference Proceedings) Vol. 1910 (2017) p. 020017
  13. Lukashev E A, Lukashev E A i dr Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-matematicheskie Nauki 21 437 (2017)
  14. Girzhon V  V, Kovalyova V  M, Smolyakov O  V Metallofiz. Noveishie Tekhnol. 36 745 (2016)
  15. Girzhon V  V, Kovalyova V  M, Smolyakov O  V Metallofiz. Noveishie Tekhnol. 37 703 (2016)
  16. Magdenko E P J Appl Mech Tech Phy 57 13 (2016)
  17. Andreev V K, Bekezhanova V B J Appl Mech Tech Phy 54 171 (2013)
  18. Zeytounian R Kh Navier-Stokes-Fourier Equations Chapter 8 (2012) p. 193
  19. Farina A, Fasano A, Mikelić A Lecture Notes In Mathematics Vol. Mathematical Models in the Manufacturing of GlassNon-Isothermal Flow of Molten Glass: Mathematical Challenges and Industrial Questions2010 Chapter 4 (2011) p. 173
  20. Bekezhanova V B J Appl Mech Tech Phy 52 74 (2011)
  21. Bekezhanova V B Fluid Dyn 46 525 (2011)
  22. Sarychev V D, Mochalov S P et al Steel Transl. 40 531 (2010)
  23. Fluid Mechanics And Its Applications Vol. Convection in FluidsMiscellaneous: Various Convection Model Problems90 Chapter 10 (2009) p. 325
  24. Fluid Mechanics And Its Applications Vol. Convection in FluidsThe Thermocapillary, Marangoni, Convection Problem90 Chapter 7 (2009) p. 195
  25. Fluid Mechanics And Its Applications Vol. Convection in FluidsThe Bénard (1900, 1901) Convection Problem, Heated from below90 Chapter 4 (2009) p. 85
  26. Fluid Mechanics And Its Applications Vol. Convection in FluidsShort Preliminary Comments and Summary of Chapters 2 to 1090 Chapter 1 (2009) p. 1
  27. Fluid Mechanics And Its Applications Vol. Convection in FluidsThe Simple Rayleigh (1916) Thermal Convection Problem90 Chapter 3 (2009) p. 55
  28. FARINA ANGIOLO, FASANO ANTONIO, MIKELIĆ ANDRO Math. Models Methods Appl. Sci. 18 813 (2008)
  29. Denisova I V Microgravity Sci. Technol 20 287 (2008)
  30. Kh Z R Lecture Notes In Physics Vol. Topics in Hyposonic Flow TheorySlow Atmospheric Motion as a Low-Mach-Number Flow672 Chapter 6 (2005) p. 163
  31. Shkadov V Ya, Sisoev G M Computers & Fluids 34 151 (2005)
  32. Soto F V M, Pinazo O J M International Journal Of Heat And Mass Transfer 47 3355 (2004)
  33. Shkadov V Ya, Velarde M G, Shkadova V P Phys. Rev. E 69 (5) (2004)
  34. Shkadov V Ya, Sisoev G M Fluid Dyn. Res. 35 357 (2004)
  35. Zeytounian R Kh Comptes Rendus Mécanique 331 575 (2003)
  36. Shkadov V Ya CISM International Centre For Mechanical Sciences Vol. Interfacial Phenomena and the Marangoni EffectHydrodynamics of Slopped Falling Films428 Chapter 5 (2002) p. 191
  37. Velarde M G, Nepomnyashchy A A, Hennenberg M Advances In Applied Mechanics Vol. Advances in Applied Mechanics Volume 37Onset of oscillatory interfacial instability and wave motions in Bénard layers37 (2001) p. 167
  38. Velarde M G, Shkadov V Ya, Shkadova V P Fluid Dyn 35 515 (2000)
  39. Stoilov Yu Yu Uspekhi Fizicheskikh Nauk 170 41 (2000)

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions