Issues

 / 

1996

 / 

October

  

Methodological notes


Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamics


Institute of Physical Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation

A first-principle statistical theory of nonequilibrium processes is attempted based on the assumption of quasiclassical particle motions. This assumption leads to the BBGKY hierarchy which, in addition to physically reasonable solutions, contains solutions contradicting the causality principle. In order to eliminate them, all the distribution functions involved must be expanded as series in the small parameter ε=σ/L, where σ is the particle diameter and L is a characteristic macroscopic length. To zeroth order in ε, the BBGKY hierarchy yields the Gibbs distribution, the first law of thermodynamics, and the equations of the theory of liquids, thus enabling the thermodynamical parameters of a substance to be calculated. To the first order, one obtains (a) a system of five transport equations for five hydrodynamic variables (mass, three velocity components, and temperature), (b) a set of equations for the first-principles calculation of transport coefficients, and © the second law of thermodynamics. The possibility of an entropy increase without Liouville’s theorem being violated is demonstrated.

Fulltext pdf (742 KB)
Fulltext is also available at DOI: 10.1070/PU1996v039n10ABEH000175
PACS: 05.20.−y, 05.70.Ln, 05.90.+m (all)
DOI: 10.1070/PU1996v039n10ABEH000175
URL: https://ufn.ru/en/articles/1996/10/f/
A1996VV43300006
Citation: Martynov G A "Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamics" Phys. Usp. 39 1045–1070 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Мартынов Г А «Неравновесная статистическая механика, уравнения переноса и второе начало термодинамики» УФН 166 1105–1133 (1996); DOI: 10.3367/UFNr.0166.199610g.1105

References (4) Cited by (18) Similar articles (20) ↓

  1. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  2. S.L. Sobolev “Local non-equilibrium transport modelsPhys. Usp. 40 1043–1053 (1997)
  3. S.N. Semenov, M.E. Schimpf “Mass transport thermodynamics in nonisothermal molecular liquid mixturesPhys. Usp. 52 1045–1054 (2009)
  4. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  5. V.A. Davydov, V.G. Morozov “Galilean transformations and evolution of autowave fronts in external fieldsPhys. Usp. 39 305–311 (1996)
  6. A.B. Brailovskii, V.L. Vaks, V.V. Mityugov “Quantum models of relaxationPhys. Usp. 39 745–750 (1996)
  7. G. Oppen “Objects and environmentPhys. Usp. 39 617–622 (1996)
  8. I.E. Mazets “Kinetic equation including wave function collapsesPhys. Usp. 41 505–507 (1998)
  9. B.B. Kadomtsev “Classical and quantum irreversibilityPhys. Usp. 38 923–929 (1995)
  10. M.D. Bal’makov “Information capacity of condensed systemsPhys. Usp. 42 1167–1173 (1999)
  11. V.V. Brazhkin, R.N. Voloshin et alPhase equilibria in partially open systems under pressure: the decomposition of stoichiometric GeO2 oxidePhys. Usp. 46 1283–1289 (2003)
  12. R.P. Poplavskii “Maxwell demon and the correspondence between information and entropySov. Phys. Usp. 22 371–380 (1979)
  13. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  14. L.A. Apresyan, Yu.A. Kravtsov “Photometry and coherence: wave aspects of the theory of radiation transportSov. Phys. Usp. 27 301–313 (1984)
  15. A.A. Logunov “The theory of the classical gravitational fieldPhys. Usp. 38 179–193 (1995)
  16. N.P. Klepikov “Radiation damping forces and radiation from charged particlesSov. Phys. Usp. 28 506–520 (1985)
  17. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  18. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  19. A.V. Belinskii “Bell’s theorem without the hypothesis of localityPhys. Usp. 37 219–222 (1994)
  20. P.K. Volkov “Similarity in problems related to zero-gravity hydromechanicsPhys. Usp. 41 1211–1217 (1998)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions