Issues

 / 

1995

 / 

March

  

Instruments and methods of investigation


Impurity ion implantation into silicon single crystals: efficiency and radiation damage

 a,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Department of Physics, Belarussian State University, prosp. F. Skoriny 4, Minsk, 220050, Belarus

The ion implantation method is analysed from the point of view of its efficiency as a technique for doping silicon with donor and acceptor impurities, for synthesising silicon-based compounds and for producing gettering layers and optoelectronic structures. The introduction, agglomeration, and annealing of radiation-produced defects in ion-implanted silicon are considered. The role of interstitial defects in radiation-related defect formation is estimated. Mechanisms of athermal migration of silicon atoms in the silicon lattice are analysed.

Fulltext pdf (621 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n03ABEH000079
PACS: 68.55.Ln, 78.50.Ge
DOI: 10.1070/PU1995v038n03ABEH000079
URL: https://ufn.ru/en/articles/1995/3/g/
A1995QU24300007
Citation: Vavilov V S, Chelyadinskii A R "Impurity ion implantation into silicon single crystals: efficiency and radiation damage" Phys. Usp. 38 333–343 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Вавилов В С, Челядинский А Р «Ионная имплантация примесей в монокристаллы кремния: эффективность метода и радиационные нарушения» УФН 165 347–358 (1995); DOI: 10.3367/UFNr.0165.199503g.0347

References (78) Cited by (19) ↓ Similar articles (4)

  1. Kudryashov S, Nastulyavichus A et al Technologies 12 224 (2024)
  2. Nastulyavichus A A, Kudryashov S I et al Optical Materials 155 115817 (2024)
  3. Gavrushko V V, Ionov A S et al Tech. Phys. 69 1181 (2024)
  4. Kudryashov S, Nastulyavichus A et al Optics & Laser Technology 158 108873 (2023)
  5. Afanasev A V, Ilyin V A, Luchinin V V Semiconductors 56 472 (2022)
  6. Kudryashov S, Nastulyavichus A et al ACS Appl. Electron. Mater. 3 769 (2021)
  7. Igo A V Opt. Spectrosc. 128 1125 (2020)
  8. Asadchikov V E, D’yachkova I G et al Tech. Phys. 64 680 (2019)
  9. Kalmykov Sh A J. Synch. Investig. 11 371 (2017)
  10. Ionin A A, Kudryashov S I et al Jetp Lett. 100 55 (2014)
  11. Shchennikov V V, Shchennikov V V et al Acta Phys. Pol. A 124 244 (2013)
  12. Logan D F, Knights A P et al Semicond. Sci. Technol. 26 045009 (2011)
  13. Poklonski N A, Gorbachuk N I et al Microelectronics Reliability 50 813 (2010)
  14. Tkachenko A V, Ananina O Y, Yanovsky A S Bull. Russ. Acad. Sci. Phys. 74 157 (2010)
  15. Poklonski N A, Gorbachuk N I et al Physica B: Condensed Matter 404 4667 (2009)
  16. Arzikulov E U, Ruzimuradov Zh T J. Commun. Technol. Electron. 52 1049 (2007)
  17. Chelyadinskii A R, Komarov F F Uspekhi Fizicheskikh Nauk 173 813 (2003)
  18. Makoviichuk M I Russ Microelectron 29 219 (2000)
  19. Huber H, Assmann W et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 146 309 (1998)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions