Issues

 / 

1989

 / 

May

  

Reviews of topical problems


Randomness, determinateness, and predictability


Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation

The basic conventions regarding randomness employed in mathematics (set-theoretical approach, algorithmic approach) and in physics (decaying correlations, continuous spectrum, hyperbolicity, fractal nature, uncontrollability, nonrepeatability, nonreproducibility, nonpredictability, etc.) are analyzed. It is pointed out that phenomena that are random from one viewpoint may be determinate from another viewpoint. The concept of partially determinate processes, i.e., processes that admit prediction over bounded time intervals, is discussed. The theory of partially determinate processes is based on identifying randomness with unpredictability and establishes the interrelation between the real physical process $x(t)$, the observed process $y(t)$, and the model (predictive, hypothetical) process $t(t)$. In this theory the degree of determinateness, which is denned as the correlation coefficient between the observed process and prediction, is employed as a measure of the quality of predictability. Diverse theoretical, experimental, and numerical measures of partially determinate processes as well as examples of partially determinate fields are presented. It is emphasized that the time of determinate (i.e., predictable) behavior $\tau_{\det}$ of an observed process $y(t)$ can be much longer than the correlation time $\tau_c$, and the degree of coherence is the worst estimate of the degree of determinateness. From the viewpoint expounded determinate chaos stands out as a completely determinate process over short time intervals ($\tau\ll\tau_{\det}$), as a completely random process over long intervals ($\tau\gg\tau_{\det}$), and as a partially determinate process over intermediate time intervals $\tau\sim\tau_{\det}$. It is significant that in the interval between $\tau_c$ and $\tau_{\det}$ chaotic and turbulent fields admit both a determinate and statistical (kinetic) description.

Fulltext pdf (768 KB)
Fulltext is also available at DOI: 10.1070/PU1989v032n05ABEH002718
PACS: 05.40.−a, 05.45.Ac (all)
DOI: 10.1070/PU1989v032n05ABEH002718
URL: https://ufn.ru/en/articles/1989/5/c/
Citation: Kravtsov Yu A "Randomness, determinateness, and predictability" Sov. Phys. Usp. 32 434–449 (1989)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кравцов Ю А «Случайность, детерминированность, предсказуемость» УФН 158 93–122 (1989); DOI: 10.3367/UFNr.0158.198905c.0093

Cited by (37) Similar articles (20) ↓

  1. D.K. Belashchenko “Diffusion mechanisms in disordered systems: computer simulation42 297–319 (1999)
  2. Yu.A. Kravtsov, Yu.I. Orlov “Caustics, catastrophes, and wave fields26 1038–1058 (1983)
  3. V.I. Tatarskii “Criteria for the degree of chaos32 450–451 (1989)
  4. Yu.A. Kravtsov, S.M. Rytov, V.I. Tatarskii “Statistical problems in diffraction theory18 118–130 (1975)
  5. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo “Wavelets and their uses44 447–478 (2001)
  6. Yu.N. Barabanenkov, Yu.A. Kravtsov et alStatus of the theory of propagation of waves in a Randomly inhomogeneous medium13 551–575 (1971)
  7. V.F. Turchin, V.P. Kozlov, M.S. Malkevich “The use of mathematical-statistics methods in the solution of incorrectly posed problems13 681–703 (1971)
  8. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systems54 441–464 (2011)
  9. V.S. Vikhrenko “Theory of depolarized molecular light scattering17 558–576 (1975)
  10. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows46 667–688 (2003)
  11. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics47 749–788 (2004)
  12. Yu.L. Klimontovich, A.S. Kovalev, P.S. Landa “Natural fluctuations in lasers15 95–113 (1972)
  13. E.A. Vinogradov, I.A. Dorofeyev “Thermally stimulated electromagnetic fields of solids52 425–459 (2009)
  14. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flows33 (1) 1–35 (1990)
  15. V.Yu. Terebizh “Image restoration with minimum a priori information38 137–167 (1995)
  16. E.L. Lakoza, A.V. Chalyi “Multiple light-scattering near the critical point26 573–592 (1983)
  17. A.N. Lagar’kov, V.M. Sergeev “Molecular dynamics method in statistical physics21 566–588 (1978)
  18. A.B. Medvinskii, S.V. Petrovskii et alSpatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics45 27–57 (2002)
  19. Ya.B. Zel’dovich, S.A. Molchanov et alIntermittency in random media30 353–369 (1987)
  20. Yu.G. Rudoi, A.D. Sukhanov “Thermodynamic fluctuations within the Gibbs and Einstein approaches43 1169–1199 (2000)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions