Issues

 / 

1981

 / 

February

  

Methodological notes


The uncertainty relation between energy and time of measurement


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Contrary to a wide-spread impression, the possibility of measuring an energy in a finite time without changing its initial value $(E'=E_0)$ is not in contradiction with the principles of quantum mechanics. The relation $\Delta(E'-E_0)\Delta t\ge\hslash$ holds only in the case when the energy of interaction between the quantum system in question and the apparatus is a function of a coordinate of the system. The condition for a nonperturbing energy measurement is that the interaction energy $H_1$, of the system and the apparatus depend on the energy operator $\hat E$ and that the operators $\hat H$ and $\hat E$ commute. It is also possible to have a nonperturbing measurement in which the error in measuring the energy is so small that $\Delta E\ll\hslash/\Delta t$. Measurement of the energy of a given system is accompanied by an increase in the uncertainty $\Delta\varepsilon$ of the energy of the apparatus. The error $\Delta E$ in the measurement of the system's energy and the perturbation $\Delta\varepsilon$ of the energy of the apparatus are connected by the relations $(\Delta E+\Delta\varepsilon)\cdot\Delta t\ge\hslash$ and $\Delta E\cdot\Delta\varepsilon)\ge(\hslash/2\Delta t)^2$.

Fulltext pdf (436 KB)
Fulltext is also available at DOI: 10.1070/PU1981v024n02ABEH004638
PACS: 03.65.Bz
DOI: 10.1070/PU1981v024n02ABEH004638
URL: https://ufn.ru/en/articles/1981/2/e/
Citation: Vorontsov Yu I "The uncertainty relation between energy and time of measurement" Sov. Phys. Usp. 24 150–158 (1981)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Воронцов Ю И «Соотношение неопределенности энергия — время измерения» УФН 133 351–365 (1981); DOI: 10.3367/UFNr.0133.198102f.0351

Cited by (18) Similar articles (20) ↓

  1. M.B. Mensky “Measurability of quantum fields and the energy—time uncertainty relationPhys. Usp. 54 519–528 (2011)
  2. V.V. Mityugov “Thermodynamics of simple quantum systemsPhys. Usp. 43 631–637 (2000)
  3. A.V. Belinskii “Bell’s paradoxes without the introduction of hidden variablesPhys. Usp. 37 413–419 (1994)
  4. A.V. Belinskii “Bell’s theorem without the hypothesis of localityPhys. Usp. 37 219–222 (1994)
  5. G. Oppen “Objects and environmentPhys. Usp. 39 617–622 (1996)
  6. N.V. Evdokimov, D.N. Klyshko et alBell’s inequalities and EPR-Bohm correlations: working classical radiofrequency modelPhys. Usp. 39 83–98 (1996)
  7. A.V. Belinskii “Bell’s theorem for trichotomic observablesPhys. Usp. 40 305–316 (1997)
  8. L.A. Rivlin “Photons in a waveguide (some thought experiments)Phys. Usp. 40 291–303 (1997)
  9. I.E. Mazets “Kinetic equation including wave function collapsesPhys. Usp. 41 505–507 (1998)
  10. Yu.L. Klimontovich “Entropy and information of open systemsPhys. Usp. 42 375–384 (1999)
  11. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  12. S.P. Vyatchanin, F.Ya. Khalili “’Interaction-free’ measurement: possibilities and limitationsPhys. Usp. 47 705–716 (2004)
  13. D.A. Kirzhnits “Are the Kramers-Kronig relations for the dielectric permittivity of a material always valid?Sov. Phys. Usp. 19 530–537 (1976)
  14. B.M. Bolotovskii, S.N. Stolyarov “Law of conservation of energy for the electromagnetic field as applied to radiation by moving charged particlesSov. Phys. Usp. 35 (3) 248–254 (1992)
  15. S.V. Vonsovskii, M.S. Svirskii “The Klein paradox and the zitterbewegung of an electron in a field with a constant scalar potentialPhys. Usp. 36 (5) 436–439 (1993)
  16. Yu.N. Ovchinnikov, A.M. Dyugaev “Current status of the Kondo problemPhys. Usp. 44 541–545 (2001)
  17. N.S. Stepanov, A.V. Shisharin “Measuring the gravitational constant in a university laboratoryPhys. Usp. 45 561–564 (2002)
  18. G.S. Golitsyn “Demonstrativeness of using energy rather than mass as the unit of measure for a number of problems in physics, mechanics, and geophysicsPhys. Usp. 51 723–725 (2008)
  19. G.N. Gaidukov, A.A. Abramov “An interpretation of the energy conservation law for a point charge moving in a uniform electric fieldPhys. Usp. 51 163–166 (2008)
  20. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions