Выпуски

 / 

2021

 / 

Октябрь

  

Обзоры актуальных проблем


Протяжённые квантовые сети

 
University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada

Квантовые сети, позволяющие генерировать запутанные состояния между удалёнными кубитами, обладают огромным научным и прикладным потенциалом. Их можно использовать для безопасной квантовой криптографии и телепортации квантовых состояний между городами и странами, в астрономии высокого разрешения и распределённых квантовых вычислениях. Рассеяние фотонов в оптоволокне и трудности в создании полноценных квантовых узлов не позволяют пока построить пространственно протяжённые квантовые сети. Проводится обзор текущих подходов к созданию таких сетей, в первую очередь квантовых повторителей, которые призваны "компенсировать" потери в оптоволокне. Обсуждаются методы увеличения радиуса действия систем квантовой криптографии без использования квантовых повторителей.

Текст pdf (1,3 Мб)
English fulltext is available at DOI: 10.3367/UFNe.2020.11.038888
Ключевые слова: квантовая сеть, квантовая криптография, квантовый повторитель
PACS: 03.65.Ud, 03.67.−a, 42.50.Ex (все)
DOI: 10.3367/UFNr.2020.11.038888
URL: https://ufn.ru/ru/articles/2021/10/c/
000740826300003
2-s2.0-85123456910
Цитата: Сукачёв Д Д "Протяжённые квантовые сети" УФН 191 1077–1094 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 9 июня 2020, доработана: 26 ноября 2020, 26 ноября 2020

English citation: Sukachev D D “Large quantum networksPhys. Usp. 64 1021–1037 (2021); DOI: 10.3367/UFNe.2020.11.038888

Список литературы (251) ↓ Статьи, ссылающиеся на эту (23) Похожие статьи (20)

  1. Поплавский Р П УФН 115 465 (1975); Poplavskii R P Sov. Phys. Usp. 18 222 (1975)
  2. Манин Ю И Вычислимое и невычислимое (М.: Советское радио, 1980)
  3. Feynman R P Int. J. Theor. Phys. 21 467 (1982)
  4. Deutsch D, Jozsa R Proc. R. Soc. Lond. A 439 553 (1992)
  5. Shor P W Proc. of the 35th Annual Symp. on Foundations of Computer Science, 20 - 22 November 1994, Santa Fe, NM, USA (Los Alamitos, CA: IEEE Computer Soc., 1994) p. 124
  6. Rivest R L, Shamir A, Adleman L Commun. ACM 21 120 (1978)
  7. Молдовян Н А Введение в криптосистемы с открытым ключом (М.: BHV, 2014) с. 228
  8. Xu N et al Phys. Rev. Lett. 108 130501 (2012)
  9. Gidney C, Ekerå M Quantum 5 433 (2021); Gidney C, Ekerå M arXiv:1905.09749
  10. Arute F et al Nature 574 505 (2019); Arute F et al arXiv:1910.11333
  11. Bernien H et al Nature 551 579 (2017); Bernien H et al arXiv:1707.04344
  12. Zhang J et al Nature 551 601 (2017); Zhang J et al arXiv:1708.01044
  13. Diamanti E et al npj Quantum Inf. 2 16025 (2016); Diamanti E et al arXiv:1606.05853
  14. Bernstein D J, Buchmann J, Dahmen E (Eds) Post-Quantum Cryptography (Berlin: Springer, 2009)
  15. Bennett C H, Brassard G Proc. of IEEE Intern. Conf. on Computers, Systems and Signal Processing (New York: IEEE, 1984) p. 8
  16. Gisin N et al Rev. Mod. Phys. 74 145 (2002); Gisin N et al quant-ph/0101098
  17. "Продемонстрирована работа предсерийного образца первого в России квантового телефона", Пресс-служба МГУ им. М.В. Ломоносова. 29.05.2019, https://www.msu.ru/science/main_themes/prodemonstrirovana-rabota-predseriynogo-obraztsa-pervogo-v-rossii-kvantovogo-telefona.html
  18. Duplinskiy A V et al J. Russ. Laser Res. 39 113 (2018); Duplinskiy A V et al arXiv:1712.09831
  19. Wootters W K, Zurek W H Nature 299 802 (1982)
  20. Yin H-L et al Phys. Rev. Lett. 117 190501 (2016)
  21. Briegel H-J et al Phys. Rev. Lett. 81 5932 (1998)
  22. Duan L-M et al Nature 414 413 (2001); Duan L-M et al quant-ph/0105105
  23. Kimble H J Nature 453 1023 (2008); Kimble H J arXiv:0806.4195
  24. Monroe C et al Phys. Rev. A 89 022317 (2014); Monroe C et al arXiv:1208.0391
  25. Fitzsimons J F npj Quantum Inf. 3 23 (2017); Fitzsimons J F arXiv:1611.10107
  26. Barz S et al Science 335 303 (2012); Barz S et al arXiv:1110.1381
  27. Gottesman D, Jennewein T, Croke S Phys. Rev. Lett. 109 070503 (2012); Gottesman D, Jennewein T, Croke S arXiv:1107.2939
  28. Khabiboulline E T et al Phys. Rev. Lett. 123 070504 (2019); Khabiboulline E T et al arXiv:1809.01659
  29. Dai H et al Nat. Phys. 16 848 (2020)
  30. Kómár P et al Nat. Phys. 10 582 (2014); Kómár P et al arXiv:1310.6045
  31. Ilo-Okeke E O et al npj Quantum Inf. 4 40 (2018); Ilo-Okeke E O et al arXiv:1709.08423
  32. Krutyanskiy V et al npj Quantum Inf. 5 72 (2019); Krutyanskiy V et al arXiv:1901.06317
  33. Pirandola S et al Nat. Photon. 12 724 (2018); Pirandola S et al arXiv:1811.01969
  34. Giovannetti V, Lloyd S, MacCone L Phys. Rev. Lett. 96 010401 (2006); Giovannetti V, Lloyd S, MacCone L quant-ph/0509179
  35. Degen C L, Reinhard F, Cappellaro P Rev. Mod. Phys. 89 035002 (2017); Degen C L, Reinhard F, Cappellaro P arXiv:1611.02427
  36. Vazirani U, Vidick T Phys. Rev. Lett. 113 140501 (2014); Vazirani U, Vidick T arXiv:1210.1810
  37. Белинский А В, Клышко Д Н УФН 163 (8) 1 (1993); Belinskii A V, Klyshko D N Phys. Usp. 36 653 (1993)
  38. Wehner S, Elkouss D, Hanson R Science 362 eaam9288 (2018)
  39. Lemonde M-A et al Phys. Rev. Lett. 120 213603 (2018)
  40. Wang H, Lekavicius I Appl. Phys. Lett. 117 230501 (2020); Wang H, Lekavicius I arXiv:2011.09990
  41. Neuman T et al arXiv:2003.08383
  42. Magnard P et al Phys. Rev. Lett. 125 260502 (2020)
  43. Aharonovich I, Englund D, Toth M Nat. Photon. 10 631 (2016)
  44. Eisaman M D et al Rev. Sci. Instrum. 82 071101 (2011)
  45. Wang X et al Chem. Soc. Rev. 45 2239 (2016)
  46. Senellart P, Solomon G, White A Nat. Nanotechnol. 12 1026 (2017)
  47. Wang H et al Nat. Photon. 13 770 (2019)
  48. Zaske S et al Phys. Rev. Lett. 109 147404 (2012); Zaske S et al arXiv:1204.6253
  49. Ates S et al Phys. Rev. Lett. 109 147405 (2012); Ates S et al arXiv:1207.4226
  50. Pelc J S et al Opt. Express 20 27510 (2012)
  51. Takemoto K et al Sci. Rep. 5 14383 (2015)
  52. Pirandola S et al Adv. Opt. Photon. 12 1012 (2020); Pirandola S et al arXiv:1906.01645
  53. Scarani V et al Rev. Mod. Phys. 81 1301 (2009); Scarani V et al arXiv:0802.4155
  54. Hadfield R H Nat. Photon. 3 696 (2009)
  55. Bhaskar M K et al Nature 580 60 (2020)
  56. Gol'tsman G N et al Appl. Phys. Lett. 79 705 (2001)
  57. Marsili F et al Nat. Photon. 7 210 (2013); Marsili F et al arXiv:1209.5774
  58. Raussendorf R, Briegel H J Phys. Rev. Lett. 86 5188 (2001)
  59. Walther P et al Nature 434 169 (2005)
  60. Chen K et al Phys. Rev. Lett. 99 120503 (2007); Chen K et al arXiv:0705.0174
  61. Corning® SMF-28® Ultra Optical Fiber. Product Information, https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf
  62. Tamura Y et al J. Lightwave Technol. 36 44 (2018)
  63. Takesue H et al Nat. Photon. 1 343 (2007)
  64. Bennett C H et al Phys. Rev. Lett. 70 1895 (1993)
  65. Żukowski M et al Phys. Rev. Lett. 71 4287 (1993)
  66. Bose S, Vedral V, Knight P L Phys. Rev. A 57 822 (1998); Bose S, Vedral V, Knight P L quant-ph/9708004
  67. Pirandola S et al Nat. Commun. 8 15043 (2017); Pirandola S et al arXiv:1510.08863
  68. Pirandola S Commun. Phys. 2 51 (2019)
  69. Hensen B et al Nature 526 682 (2015)
  70. Rosenfeld W et al Phys. Rev. Lett. 119 010402 (2017); Rosenfeld W et al arXiv:1611.04604
  71. Chou C-W et al Science 316 1316 (2007); Chou C-W et al quant-ph/0702057
  72. Humphreys P C et al Nature 558 268 (2018); Humphreys P C et al arXiv:1712.07567
  73. Hofmann J et al Science 337 72 (2012)
  74. Delteil A et al Nat. Phys. 12 218 (2016); Delteil A et al arXiv:1507.00465
  75. Yu Y et al Nature 578 240 (2020)
  76. Monroe C, Kim J Science 339 1164 (2013)
  77. Devoret M H, Schoelkopf R J Science 339 1169 (2013)
  78. Awschalom D D et al Nat. Photon. 12 516 (2018)
  79. Stern L et al Optica 4 1 (2017)
  80. MacQuarrie E R et al Phys. Rev. Lett. 111 227602 (2013); MacQuarrie E R et al arXiv:1306.6356
  81. Arrangoiz-Arriola P et al Phys. Rev. X 8 031007 (2018)
  82. DiCarlo L et al Nature 460 240 (2009); DiCarlo L et al arXiv:0903.2030
  83. Abobeih M H et al Nat. Commun. 9 2552 (2018)
  84. DiVincenzo D P Fortsch. Phys. 48 771 (2000)
  85. Bennett C H et al Phys. Rev. Lett. 76 722 (1996); Bennett C H et al quant-ph/9511027
  86. Borregaard J et al Phys. Rev. X 10 021071 (2020)
  87. Lauk N et al Quantum Sci. Technol. 5 020501 (2020)
  88. Mirhosseini M et al Nature 588 599 (2020); Mirhosseini M et al arXiv:2004.04838
  89. Sangouard N et al Rev. Mod. Phys. 83 33 (2011); Sangouard N et al arXiv:0906.2699
  90. Simon C et al Eur. Phys. J. D 58 1 (2010)
  91. Blatt R, Roos C F Nat. Phys. 8 277 (2012)
  92. Gross C, Bloch I Science 357 995 (2017)
  93. Lekitsch B et al Sci. Adv. 3 e1601540 (2017); Lekitsch B et al arXiv:1508.00420
  94. Duan L-M, Monroe C Rev. Mod. Phys. 82 1209 (2010)
  95. Colombe Y et al Nature 450 272 (2007)
  96. Reichel J, Vuletić V (Eds) Atom Chips (Weinheim: Wiley-VCH, 2011)
  97. Wang J et al Nat. Photon. 14 273 (2020)
  98. Elshaari A W et al Nat. Photon. 14 285 (2020)
  99. Purcell E M, Torrey H C, Pound R V Phys. Rev. 69 37 (1946)
  100. Быков В П Квантовая электроника 1 1557 (1974); Bykov V P Sov. J. Quantum Electron. 4 861 (1975)
  101. Reiserer A, Rempe G Rev. Mod. Phys. 87 1379 (2015); Reiserer A, Rempe G arXiv:1412.2889
  102. Brekenfeld M et al Nat. Phys. 16 647 (2020)
  103. Albrecht R et al Phys. Rev. Lett. 110 243602 (2013)
  104. Ruf M et al Phys. Rev. Appl. 15 024049 (2021); Ruf M et al arXiv:2009.08204
  105. Riedel D et al Phys. Rev. X 7 031040 (2017)
  106. Choi H, Heuck M, Englund D Phys. Rev. Lett. 118 223605 (2017)
  107. Robinson J T et al Phys. Rev. Lett. 95 143901 (2005)
  108. Giesz V et al Nat. Commun. 7 11986 (2016)
  109. Mouradian S et al Appl. Phys. Lett. 111 021103 (2017)
  110. Duan L-M, Kimble H J Phys. Rev. Lett. 92 127902 (2004); Duan L-M, Kimble H J quant-ph/0309187
  111. Najer D et al Nature 575 622 (2019)
  112. Takahashi H et al Phys. Rev. Lett. 124 013602 (2020); Takahashi H et al arXiv:1808.04031
  113. Stute A et al Nature 485 482 (2012)
  114. Atatüre M et al Nat. Rev. Mater. 3 38 (2018)
  115. Awschalom D D et al Nat. Photon. 12 516 (2018)
  116. Zhang G et al arXiv:2008.06458
  117. Gruber A et al Science 276 2012 (1997)
  118. Chu Y, Lukin M D arXiv:1504.05990
  119. Barry J F et al Rev. Mod. Phys. 92 015004 (2020); Barry J F et al
  120. Abobeih M H et al Nat. Commun. 9 2552 (2018); Abobeih M H et al arXiv:1801.01196
  121. Bradley C E et al Phys. Rev. X 9 031045 (2019); Bradley C E et al arXiv:1905.02094
  122. Kalb N et al Science 356 928 (2017); Kalb N et al arXiv:1703.03244
  123. Faraon A et al Phys. Rev. Lett. 109 033604 (2012); Faraon A et al arXiv:1202.0806
  124. Udvarhelyi P et al Phys. Rev. Appl. 11 044022 (2019)
  125. Ruf M et al Nano Lett. 19 3987 (2019)
  126. Rozpedek F et al Phys. Rev. A 99 052330 (2019); Rozpedek F et al arXiv:1809.00364
  127. Ghobadi R et al Phys. Rev. A 99 053825 (2019)
  128. Mills A R et al Nat. Commun. 10 1063 (2019); Mills A R et al arXiv:1809.03976
  129. Safonov A N et al Phys. Rev. Lett. 77 4812 (1996)
  130. Hoese M et al Sci. Adv. 6038 (2020)
  131. Dietrich A et al Phys. Rev. B 101 081401 (2020); Dietrich A et al arXiv:1903.02931
  132. Вавилов В С и др ФТП 14 1811 (1980); Vavilov V S et al Sov. Phys. Semicond. 14 1078 (1980)
  133. Зайцев A M, Вавилов B C, Гиппиус A A Краткие сообщения по физике ФИАН (10) 20 (1981)
  134. Екимов Е А, Кондрин М В УФН 187 577 (2017); Ekimov E A, Kondrin M V Phys. Usp. 60 539 (2017)
  135. Wang C et al J. Phys. B 39 37 (2005)
  136. Sipahigil A et al Science 354 847 (2016)
  137. Nguyen C T et al Phys. Rev. Lett. 123 183602 (2019); Nguyen C T et al arXiv:1907.13199
  138. Evans R E et al Science 362 662 (2018); Evans R E et al arXiv:1807.04265
  139. Jahnke K D et al New J. Phys. 17 043011 (2015)
  140. Sukachev D D et al Phys. Rev. Lett. 119 223602 (2017); Sukachev D D et al arXiv:1708.08852
  141. Goss J P et al Phys. Rev. B 72 035214 (2005)
  142. Evans R E et al Phys. Rev. Appl. 5 044010 (2016); Evans R E et al arXiv:1512.03820
  143. Harris I et al Phys. Rev. B 102 195206 (2020); Harris I et al arXiv:1907.12548
  144. Palyanov Yu N et al Sci. Rep. 5 14789 (2015)
  145. Iwasaki T et al Sci. Rep. 5 12882 (2015)
  146. Iwasaki T et al Phys. Rev. Lett. 119 253601 (2017); Iwasaki T et al arXiv:1708.03576
  147. Trusheim M E et al Phys. Rev. Lett. 124 023602 (2020)
  148. Trusheim M E et al Phys. Rev. B 99 075430 (2019); Trusheim M E et al arXiv:1805.12202
  149. Kim S et al Nat. Commun. 9 2623 (2018); Kim S et al arXiv:1801.04399
  150. Gottscholl A et al Nat. Mater. 19 540 (2020)
  151. Jungwirth N R, Fuchs G D Phys. Rev. Lett. 119 057401 (2017)
  152. Tran T T et al Nat. Nanotechnol. 11 37 (2016)
  153. Zargaleh S A et al Phys. Rev. B 98 165203 (2018)
  154. Christle D J et al Phys. Rev. X 7 021046 (2017)
  155. Bergeron L et al PRX Quantum 1 020301 (2020)
  156. Ph.D. Thesis (Burnaby, BC: Simon Fraser Univ., 2019)
  157. Екимов А И, Онушенко А А Письма в ЖЭТФ 34 363 (1981); Ekimov A I, Onushenko A A JETP Lett. 34 345 (1981)
  158. Lodahl P, Mahmoodian S, Stobbe S Rev. Mod. Phys. 87 347 (2015); Lodahl P, Mahmoodian S, Stobbe S arXiv:1312.1079
  159. Гросс Е Ф УФН 76 433 (1962); Gross E F Sov. Phys. Usp. 5 195 (1962)
  160. Press D et al Nat. Photon. 4 367 (2010)
  161. Deng G-W et al, Quantum Dot Optoelectronic Devices (Lecture Notes in Nanoscale Science and Technology) Vol. 27 (Eds P Yu, Z M Wang) (Cham: Springer Intern. Publ., 2020) p. 107
  162. Veldhorst M et al Nat. Nanotechnol. 9 981 (2014); Veldhorst M et al arXiv:1407.1950
  163. Zajac D M et al Science 359 439 (2018)
  164. Loss D, DiVincenzo D P Phys. Rev. A 57 120 (1998); Loss D, DiVincenzo D P cond-mat/9701055
  165. Novoselov K S et al Science 353 aac9439 (2016)
  166. Wang Q H et al Nat. Nanotechnol. 7 699 (2012)
  167. Mak K F, Shan J Nat. Photon. 10 216 (2016)
  168. Келдыш Л В Письма в ЖЭТФ 29 716 (1979); Keldysh L V JETP Lett. 29 658 (1979)
  169. Srivastava A et al Nat. Nanotechnol. 10 491 (2015)
  170. Plechinger G et al Phys. Status Solidi Rapid Res. Lett. 9 457 (2015); Plechinger G et al arXiv:1507.01342
  171. Childress L et al Phys. Rev. Lett. 96 070504 (2006)
  172. Гриб А А УФН 142 619 (1984); Grib A A Sov. Phys. Usp. 27 284 (1984)
  173. Bennett C H et al Phys. Rev. A 53 2046 (1996); Bennett C H et al quant-ph/9511030
  174. Bennett C H et al Phys. Rev. A 54 3824 (1996); Bennett C H et al quant-ph/9604024
  175. Shor P W Phys. Rev. A 52 R2493 (1995)
  176. Terhal B M Rev. Mod. Phys. 87 307 (2015); Terhal B M arXiv:1302.3428
  177. Muralidharan S et al Sci. Rep. 6 20463 (2016)
  178. Guha S et al Phys. Rev. A 92 022357 (2015); Guha S et al arXiv:1404.7183
  179. Van der Wal C H et al Science 301 196 (2003)
  180. Kuzmich A et al Nature 423 731 (2003); Kuzmich A et al quant-ph/0305162
  181. Yuan Z-S et al Nature 454 1098 (2008); Yuan Z-S et al arXiv:0803.1810
  182. Zhao B et al Phys. Rev. Lett. 98 240502 (2007)
  183. Jiang L, Taylor J M, Lukin M D Phys. Rev. A 76 012301 (2007)
  184. Wallraff A et al Nature 431 162 (2004)
  185. Blais A et al Phys. Rev. A 69 062320 (2004); Blais A et al cond-mat/0402216
  186. Häffner H et al Nature 438 643 (2005); Häffner H et al quant-ph/0603217
  187. Moehring D L et al Nature 449 68 (2007)
  188. Monroe C et al Phys. Rev. Lett. 75 4714 (1995)
  189. Meraner M et al Phys. Rev. A 102 052614 (2020); Meraner M et al arXiv:1912.09259
  190. Lo H-K, Curty M, Qi B Phys. Rev. Lett. 108 130503 (2012); Lo H-K, Curty M, Qi B arXiv:1109.1473
  191. Nguyen C T et al Phys. Rev. B 100 165428 (2019); Nguyen C T et al arXiv:1907.13200
  192. Varnava M, Browne D E, Rudolph T Phys. Rev. Lett. 97 120501 (2006); Varnava M, Browne D E, Rudolph T quant-ph/0507036
  193. Munro W J et al Nat. Photon. 6 777 (2012); Munro W J et al arXiv:1306.4137
  194. Fowler A G et al Phys. Rev. Lett. 104 180503 (2010); Fowler A G et al arXiv:0910.4074
  195. Muralidharan S et al Phys. Rev. Lett. 112 250501 (2014); Muralidharan S et al arXiv:1310.5291
  196. Glaudell A N, Waks E, Taylor J M New J. Phys. 18 093008 (2016)
  197. Briegel H J, Raussendorf R Phys. Rev. Lett. 86 910 (2001); Briegel H J, Raussendorf R quant-ph/0004051
  198. Schwartz I et al Science 354 434 (2016); Schwartz I et al arXiv:1606.07492
  199. Gimeno-Segovia M, Rudolph T, Economou S E Phys. Rev. Lett. 123 070501 (2019); Gimeno-Segovia M, Rudolph T, Economou S E arXiv:1801.02599
  200. Nielsen M A Rep. Math. Phys. 57 147 (2006); Nielsen M A quant-ph/0504097
  201. Raussendorf R, Briegel H J Phys. Rev. Lett. 86 5188 (2001)
  202. Azuma K, Tamaki K, Lo H-K Nat. Commun. 6 6787 (2015); Azuma K, Tamaki K, Lo H-K arXiv:1309.7207
  203. Lindner N H, Rudolph T Phys. Rev. Lett. 103 113602 (2009)
  204. He Y-M et al Nat. Nanotechnol. 8 213 (2013); He Y-M et al arXiv:1303.4058
  205. Lu C-Y et al Nat. Phys. 3 91 (2007)
  206. Li Z-D et al Nat. Photon. 13 644 (2019); Li Z-D et al arXiv:1908.05351
  207. Hasegawa Y et al Nat. Commun. 10 13480 (2020)
  208. Lake D P et al Nat. Commun. 11 2208 (2020)
  209. Armani D K et al Nature 421 925 (2003)
  210. Ахманов С А, Хохлов Р В ЖЭТФ 43 351 (1962); Akhmanov S A, Khokhlov R V Sov. Phys. JETP 16 252 (1963)
  211. Kroll H Phys. Rev. 127 1207 (1962)
  212. Kingston R H Proc. IRE 50 472 (1962)
  213. Boyd R Nonlinear Optics (New York: Academic Press, 2008) p. 640
  214. Ashkin A, Boyd G, Dziedzic J IEEE J. Quantum Electron. 2 109 (1966)
  215. Houe M, Townsend P D J. Phys. D 28 1747 (1995)
  216. Tanzilli S et al Eur. Phys. J. D 18 155 (2002)
  217. Zaske S et al Phys. Rev. Lett. 109 147404 (2012); Zaske S et al arXiv:1204.6253
  218. Dréau A et al Phys. Rev. Appl. 9 064031 (2018)
  219. Hill J T et al Nat. Commun. 3 1196 (2012); Hill J T et al arXiv:1206.0704
  220. Dong C et al Science 338 1609 (2012)
  221. Mitchell M, Lake D P, Barclay P E Optica 6 832 (2019); Mitchell M, Lake D P, Barclay P E arXiv:1902.07763
  222. Lucamarini M et al Nature 557 400 (2018); Lucamarini M et al arXiv:1811.06826
  223. Ursin R et al Nat. Phys. 3 481 (2007)
  224. Nauerth S et al Proc. SPIE 8518 85180D (2012)
  225. Vallone G et al Phys. Rev. Lett. 115 040502 (2015); Vallone G et al arXiv:1406.4051
  226. Yin J et al Science 356 1140 (2017); Yin J et al arXiv:1707.01339
  227. Buttler W T et al Phys. Rev. Lett. 84 5652 (2000); Buttler W T et al quant-ph/0001088
  228. Schmitt-Manderbach T et al Phys. Rev. Lett. 98 010504 (2007)
  229. Liao S-K et al Nat. Photon. 11 509 (2017)
  230. Fedrizzi A et al Nat. Phys. 5 389 (2009)
  231. Yin J et al Nature 488 185 (2012); Yin J et al arXiv:1205.2024
  232. Bedington R, Arrazola J M, Ling A npj Quantum Inf. 3 30 (2017); Bedington R, Arrazola J M, Ling A arXiv:1707.03613
  233. Nauerth S et al Nat. Photon. 7 382 (2013)
  234. Boone K et al Phys. Rev. A 91 052325 (2015); Boone K et al arXiv:1410.5384
  235. Yin J et al Nature 582 501 (2020)
  236. Ekert A K Phys. Rev. Lett. 67 661 (1991)
  237. Joshi S K et al New J. Phys. 20 063016 (2018)
  238. Rideout D et al Class. Quantum Grav. 29 224011 (2012)
  239. Zhang Q et al Opt. Express 26 24260 (2018)
  240. Sasaki M et al Opt. Express 19 10387 (2011)
  241. Dynes J F et al npj Quantum Inf. 5 101 (2019)
  242. Киктенко Е О и др Квантовая электроника 47 798 (2017); Kiktenko E O et al Quantum Electron. 47 798 (2017); Kiktenko E O et al arXiv:1705.07154
  243. Степанова Ю "Кванты ставят на рельсы. В ОАО РЖД оценили создание новой сети передачи данных" Коммерсантъ 13.01.2020; Степанова Ю https://www.kommersant.ru/doc/4219027
  244. Liao S-K et al Phys. Rev. Lett. 120 030501 (2018); Liao S-K et al arXiv:1801.04418
  245. Aharonov Y, Zubairy M S Science 307 875 (2005)
  246. Pfleegor R L, Mandel L Phys. Rev. 159 1084 (1967)
  247. Minder M et al Nat. Photon. 13 334 (2019); Minder M et al arXiv:1910.01951
  248. Zhong X et al Phys. Rev. Lett. 123 100506 (2019); Zhong X et al arXiv:1902.10209
  249. Wang X-B, Yu Z-W, Hu X-L Phys. Rev. A 98 062323 (2018)
  250. Liu Y et al Phys. Rev. Lett. 123 100505 (2019); Liu Y et al arXiv:1902.06268
  251. Fang X-T et al Nat. Photon. 14 422 (2020)

© Успехи физических наук, 1918–2025
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение