Processing math: 100%

Выпуски

 / 

2012

 / 

Апрель

  

Обзоры актуальных проблем


Обобщённая теория динамического среднего поля в физике сильнокоррелированных систем

 а,  а,  а, б
а Институт электрофизики УрО РАН, ул. Амундсена 106, Екатеринбург, 620016, Российская Федерация
б Институт физики металлов имени М.Н. Михеева, Уральское отделение РАН, ул. С. Ковалевской 18, Екатеринбург, 620108, Российская Федерация

Обзор посвящён обобщению теории динамического среднего поля (DMFT) для сильнокоррелированных электронных систем (СКС) с целью учёта дополнительных взаимодействий, что необходимо для последовательного описания физических эффектов в СКС. В качестве дополнительных взаимодействий рассматриваются: 1) взаимодействие электронов с антиферромагнитными (или зарядовыми) флуктуациями параметра порядка в высокотемпературных сверхпроводниках (ВТСП), приводящее к формированию псевдощелевого состояния; 2) рассеяние на статическом беспорядке и его роль в общей картине перехода металл — диэлектрик Андерсона — Хаббарда; 3) электрон-фононное взаимодействие и особенности электронного спектра в СКС. Предлагаемый DMFT+Σ-подход основан на учёте указанных взаимодействий путём введения в общую схему DMFT дополнительной (в общем случае зависящей от квазиимпульса) собственно-энергетической части Σ, которая вычисляется самосогласованным образом без нарушения общей структуры итерационного цикла DMFT. Формулируется общая схема расчёта как одночастичных (спектральная плотность, плотность состояний) свойств, так и двухчастичных (оптическая проводимость). Рассматриваются задачи о формировании псевдощели, включая картину «разрушения» ферми-поверхности и формирования «дуг Ферми», переход металл — диэлектрик в неупорядоченной модели Андерсона — Хаббарда, а также общая картина формирования особенностей электронной дисперсии в системах с сильными корреляциями. DMFT+Σ-подход обобщается для расчётов электронных свойств реальных СКС на основе метода LDA+DMFT. Рассматривается общая схема LDA+DMFT-подхода и его применение к ряду реальных систем. Обобщённый LDA+DMFT+Σ-подход применяется для расчёта псевдощелевого состояния в электронно- и дырочно-легированных ВТСП-купратах. Проводится сравнение с результатами экспериментов с использованием фотоэмиссионной спектроскопии с угловым разрешением.

Текст pdf (2,1 Мб)
English fulltext is available at DOI: 10.3367/UFNe.0182.201204a.0345
PACS: 71.10.Fd, 71.10.Hf, 71.20.−b, 71.27.+a, 71.30.+h, 72.15.Rn, 74.72.−h (все)
DOI: 10.3367/UFNr.0182.201204a.0345
URL: https://ufn.ru/ru/articles/2012/4/a/
000306528000001
2-s2.0-84864057951
2012PhyU...55..325K
Цитата: Кучинский Э З, Некрасов И А, Садовский М В "Обобщённая теория динамического среднего поля в физике сильнокоррелированных систем" УФН 182 345–378 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 20 июня 2011, 29 июня 2011

English citation: Kuchinskii E Z, Nekrasov I A, Sadovskii M V “Generalized dynamical mean-field theory in the physics of strongly correlated systemsPhys. Usp. 55 325–355 (2012); DOI: 10.3367/UFNe.0182.201204a.0345

Список литературы (190) Статьи, ссылающиеся на эту (42) Похожие статьи (20) ↓

  1. Я.С. Ляхова, Г.В. Астрецов, А.Н. Рубцов «Концепция среднего поля и методы пост-DMFT в современной теории коррелированных систем» УФН 193 825–844 (2023)
  2. Ю.А. Изюмов «Модель Хаббарда в режиме сильных корреляций» УФН 165 403–427 (1995)
  3. В.В. Вальков, Д.М. Дзебисашвили и др. «Спин-поляронная концепция в теории нормального и сверхпроводящего состояний купратов» УФН 191 673–704 (2021)
  4. С.И. Веденеев «Проблема псевдощели в высокотемпературных сверхпроводниках» УФН 191 937–972 (2021)
  5. М.В. Садовский «Псевдощель в высокотемпературных сверхпроводниках» УФН 171 539–564 (2001)
  6. А.С. Мищенко «Электрон-фононное взаимодействие в недодопированных высокотемпературных сверхпроводниках» УФН 179 1259–1280 (2009)
  7. М.В. Садовский «Высокотемпературная сверхпроводимость в слоистых соединениях на основе железа» УФН 178 1243–1271 (2008)
  8. А.А. Шашкин «Переходы металл-диэлектрик и эффекты электрон-электронного взаимодействия в двумерных электронных системах» УФН 175 139–161 (2005)
  9. Ю.А. Изюмов, Э.З. Курмаев «Материалы с сильными электронными корреляциями» УФН 178 25–60 (2008)
  10. Ю.Б. Кудасов «Ближний порядок в сильно коррелированных ферми-системах» УФН 173 121–144 (2003)
  11. Ю.А. Изюмов, Ю.Н. Скрябин «Модель двойного обмена и уникальные свойства манганитов» УФН 171 121–148 (2001)
  12. Ю.А. Изюмов «Спин-флуктуационный механизм высокотемпературной сверхпроводимости и симметрия параметра порядка» УФН 169 225–254 (1999)
  13. Е.Г. Максимов «Проблема высокотемпературной сверхпроводимости. Современное состояние» УФН 170 1033–1061 (2000)
  14. В.Т. Долгополов «Двумерная система сильновзаимодействующих электронов в кремниевых (100) структурах» УФН 189 673–690 (2019)
  15. Л.П. Питаевский «Конденсаты Бозе-Эйнштейна в поле лазерного излучения» УФН 176 345–364 (2006)
  16. Ю.С. Орлов, С.В. Николаев и др. «Особенности спиновых кроссоверов в магнитных материалах» УФН 193 689–716 (2023)
  17. Е.Л. Шангина, В.Т. Долгополов «Квантовые фазовые переходы в двумерных системах» УФН 173 801–812 (2003)
  18. И.М. Суслов «Построение (4-ε)-мерной теории для плотности состояний неупорядоченной системы вблизи перехода Андерсона» УФН 168 503–530 (1998)
  19. Е.Г. Максимов, Д.Ю. Саврасов, С.Ю. Саврасов «Электрон-фононное взаимодействие и физические свойства металлов» УФН 167 353–376 (1997)
  20. Ю.А. Изюмов «Сильно коррелированные электроны: t-J-модель» УФН 167 465–497 (1997)

Список формируется автоматически.

© Успехи физических наук, 1918–2025
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение