Выпуски

 / 

2006

 / 

Июль

  

Обзоры актуальных проблем


Узлы и зацепления распределений параметров порядка в сильно коррелированных системах


Федеральный исследовательский центр Институт прикладной физики Российской академии наук, ул. Ульянова 46, Нижний Новгород, 603000, Российская Федерация

Рассматриваются результаты работ по изучению когерентных распределений параметров порядка, которые определяют области существования различных фазовых состояний в двухкомпонентной модели Гинзбурга-Ландау. С использованием формулировки этой модели в терминах калибровочно-инвариантных параметров порядка — поля единичного вектора n, плотности ρ2 и импульса частиц с — в этих работах показано, что некоторые универсальные свойства фаз и конфигураций полей определяются топологическими характеристиками, связанными с инвариантом Хопфа Q и его обобщениями. При достаточно малых значениях плотности ее распределение в форме колец может быть предпочтительнее распределения в виде полосок. В фазе с индексом L < Q взаимного зацепления конфигураций полей n и c возникает выигрыш в свободной энергии при переходе в неоднородное токовое состояние. Обсуждается универсальный механизм разрушения корреляций при уменьшении характерных значений плотности ρ2. Вторая часть обзора посвящена анализу результатов работ, в которых заузленные конфигурации изучались в рамках моделей неабелевой теории поля. Подробно обсуждаются основные свойства квазиклассических конфигураций в теории Янга-Миллса и в модели Скирма, а также их связь с заузленными распределениями.

Текст: pdf
Войдите или зарегистрируйтесь чтобы получить доступ к полным текстам статей.
English fulltext is available at IOP
PACS: 02.40.−k, 11.15.−q, 11.27.+d, 74.20.De (все)
DOI: 10.3367/UFNr.0176.200607a.0689
URL: https://ufn.ru/ru/articles/2006/7/a/
Цитата: Протогенов А П "Узлы и зацепления распределений параметров порядка в сильно коррелированных системах" УФН 176 689–715 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

English citation: Protogenov A P “Knots and links in the order parameter distributions of strongly correlated systemsPhys. Usp. 49 667–691 (2006); DOI: 10.1070/PU2006v049n07ABEH006022

Список литературы (153) Статьи, ссылающиеся на эту (11) ↓ Похожие статьи (20)

  1. Borisov A B Dokl. Phys. 65 359 (2020)
  2. Turkevich R V, Perov A A et al Jetp Lett. 106 188 (2017)
  3. Buniy R V, Cantarella Ja et al Phys. Rev. D 89 (5) (2014)
  4. Protogenov A P, Chulkov E V, Teo Je C Y J. Phys.: Conf. Ser. 482 012035 (2014)
  5. Martina L, Pavlov M V, Zykov S A J. Phys. A: Math. Theor. 46 275201 (2013)
  6. Martina L, Martone G I, Zykov S Acta Appl Math (2012)
  7. Eschrig H Lecture Notes in Physics Vol. Topology and Geometry for PhysicsTopology822 Chapter 2 (2010) p. 11
  8. Molodtsov S V, Zinovjev G M Phys. Rev. D 80 (7) (2009)
  9. Зиновьев Г М, Zinovjev G M и др ТМФ 160 444 (2009) [Zinovjev G M, Molodtsov S V Theor Math Phys 160 1238 (2009)]
  10. Martina L, Protogenov A, Verbus V JNMP 15 353 (2008)
  11. Belyavskii V I, Kopaev Yu V Uspekhi Fizicheskikh Nauk 176 457 (2006)

© Успехи физических наук, 1918–2022
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение