Accepted articles

Methodological notes


Asymptotic theory of classical impurity transport in an inhomogeneous and non-stationary media. Hamilton’s formalism

,
Nuclear Safety Institute, Russian Academy of Sciences, ul. Bolshaya Tulskaya 52, Moscow, 115191, Russian Federation

An asymptotic theory of impurity transport in the diffusion-advection mode with the diffusivity and advection velocity slowly varying with coordinates and time is developed. The impurity concentration is reduced to single integral over time. The integrand is found from the solution of first-order ordinary differential equations, similar to Hamilton's equations for a material point in classical mechanics.

Keywords: diffusion, advection, asymptotics, Hamilton’s equations
PACS: 05.60.−k, 05.60.Cd, 02.60.Cb (all)
DOI: 10.3367/UFNe.2024.09.039764
Citation: Kondratenko P S, Matveev L V "Asymptotic theory of classical impurity transport in an inhomogeneous and non-stationary media. Hamilton’s formalism" Phys. Usp., accepted

Received: 14th, June 2024, revised: 2nd, September 2024, 13th, September 2024

Оригинал: Кондратенко П С, Матвеев Л В «Асимптотическая теория классического переноса примеси в неоднородных и нестационарных средах. Формализм Гамильтона» УФН, принята к публикации; DOI: 10.3367/UFNr.2024.09.039764

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions