Accepted articles

Methodological notes


Asymptotic theory of classical impurity transport in an inhomogeneous and non-stationary media. Hamilton’s formalism

,
Nuclear Safety Institute, Russian Academy of Sciences, ul. Bolshaya Tulskaya 52, Moscow, 115191, Russian Federation

An asymptotic theory of impurity transport in the diffusion-advection mode with the diffusivity and advection velocity slowly varying with coordinates and time is developed. The impurity concentration is reduced to single integral over time. The integrand is found from the solution of first-order ordinary differential equations, similar to Hamilton's equations for a material point in classical mechanics.

Keywords: diffusion, advection, asymptotics, Hamilton’s equations
PACS: 05.60.−k, 05.60.Cd, 02.60.Cb (all)
DOI: 10.3367/UFNe.2024.09.039764
Citation: Kondratenko P S, Matveev L V "Asymptotic theory of classical impurity transport in an inhomogeneous and non-stationary media. Hamilton’s formalism" Phys. Usp., accepted

Received: 14th, June 2024, revised: 2nd, September 2024, 13th, September 2024

Оригинал: Кондратенко П С, Матвеев Л В «Асимптотическая теория классического переноса примеси в неоднородных и нестационарных средах. Формализм Гамильтона» УФН, принята к публикации; DOI: 10.3367/UFNr.2024.09.039764

Similar articles (13) ↓

  1. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  2. E.V. Shuryak “Stochastic trajectory generation by computerSov. Phys. Usp. 27 448–453 (1984)
  3. A.A. Snarskii “Did Maxwell know about the percolation threshold? (on the fiftieth anniversary оf percolation theory)Phys. Usp. 50 1239–1242 (2007)
  4. A.V. Kukushkin “A technique for solving the wave equation and prospects for physical applications arising therefromPhys. Usp. 36 (2) 81–93 (1993)
  5. V.D. Lakhno “Translation invariance and the problem of the bipolaronPhys. Usp. 41 403–406 (1998)
  6. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  7. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  8. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamicsPhys. Usp. 39 1045–1070 (1996)
  9. A.A. Andronov, Yu.A. Ryzhov “An infinity of the classical theory of fluctuations in a nondegenerate electron gasSov. Phys. Usp. 21 873–878 (1978)
  10. S.L. Sobolev “Local non-equilibrium transport modelsPhys. Usp. 40 1043–1053 (1997)
  11. V.G. Niz’ev “Dipole-wave theory of electromagnetic diffractionPhys. Usp. 45 553–559 (2002)
  12. A.G. Shalashov “Can we refer to Hamilton equations for an oscillator with friction?Phys. Usp. 61 1082–1088 (2018)
  13. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problemPhys. Usp. 65 952–967 (2022)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions