Issues

 / 

2025

 / 

October

  

International year of quantum science and technology. Reviews of topical problems


Vernam's, Kotelnikov's, and Shannon's one-time pad and quantum cryptography

  a,   a, b, c, d
a Academy of Cryptography of the Russian Federation, PO Box 100, Moscow, 119331, Russian Federation
b Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Akademika Osip'yana str. 2, Chernogolovka, Moscow Region, 142432, Russian Federation
c Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University, Leninskie Gory 1, build. 52, Moscow, 119991, Russian Federation
d Quantum Technology Center of Lomonosov Moscow State University, Leninskie Gory 1, build. 35, Moscow, 119991, Russian Federation

Quantum cryptography — quantum key distribution (QKD) — was one of the first fields of study of quantum information theory. It reached a mature scientific level and has been implemented in commercial systems for secure quantum communications. The key distribution problem is the central issue of symmetric cryptography. Quantum cryptography solves this problem on the basis of the fundamental laws of nature: the principles of quantum mechanics. Quantum key distribution is essentially matching two independent random sequences on the transmitting and receiving sides by exchanging quantum states. Required in addition to the quantum channel is an authentic classical communication channel. Both communication channels are open and vulnerable to a perpetrator's attack. To ensure the authenticity of the classical channel at initial system startup, a seed key is required, which is used to provide information-theoretic authentication. In essence, quantum cryptography systems are mechanisms for expanding this seed key. Subsequent sessions generate a quantum key, part of which is used for authentication, while another part is employed for other cryptographic purposes, such as encryption. An issue fundamental for quantum cryptography is the number of quantum key distribution sessions that can be conducted from the initial system launch until a new system reboot, when the cryptographic properties of the quantum keys reach a critical level, after which they can no longer be used for cryptographic purposes, and a new system reboot is needed. Although a number of reviews on quantum cryptography are currently available, this issue has not been discussed in detail. It is shown that for realistic parameters of quantum cryptography systems that are currently achievable, a QKD system can operate for virtually any length of time before the next reboot. This implies that QKD systems can implement a 'one-time pad' — a set of one-time keys using only a single seed key. A brief historical overview is also presented, outlining some facts little known to the general public. This review, which is intended for a general audience, is comprehensible to undergraduate and graduate students who have completed university courses on quantum information science. The authors hope that it will provide a deeper understanding of the cryptographic underpinnings of state-of-the-art quantum key distribution systems.

Fulltext pdf (998 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.07.039972
Keywords: quantum cryptography, one-time pad, secure communications, authentication
PACS: 03.67.Dd, 03.67.Hk, 89.70.−a (all)
DOI: 10.3367/UFNe.2025.07.039972
URL: https://ufn.ru/en/articles/2025/10/a/
Citation: Arbekov I M, Molotkov S N "Vernam's, Kotelnikov's, and Shannon's one-time pad and quantum cryptography" Phys. Usp. 68 963–986 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 13th, January 2025, revised: 28th, July 2025, 28th, July 2025

Оригинал: Арбеков И М, Молотков С Н «Одноразовый блокнот Вернама, Котельникова, Шеннона и квантовая криптография» УФН 195 1021–1046 (2025); DOI: 10.3367/UFNr.2025.07.039972

References (70) ↓ Similar articles (8)

  1. Bennett C H, Brassard H "Quantum cryptography: Public key distribution and coin tossing" Proc. of the IEEE Intern. Conf. on Computers, Systems, and Signal Processing, Bangalore, India, 10-12 December 1984 (Piscataway, NJ: IEEE, 2014) p. 175; Bennett C H, Brassard H Theor. Comput. Sci. 560 7 (2014); Bennett C H, Brassard H arXiv:2003.06557
  2. Zhang Q et al Opt. Express 26 24260 (2018)
  3. Sasaki M et al Opt. Express 19 10387 (2011)
  4. "The University’s quantum network is launched. A video overview of the grand opening at Moscow State University" 21.02.2022. InfoTeCS, https://www.youtube.com/watch?v=0WAuDcYhKbo; "The University’s quantum network is launched. A video overview of the grand opening at Moscow State University" 21.02.2022. InfoTeCS, https://rutube.ru/video/74c8fa47de0f5d111f1eb04bc532bb60/?r=wd
  5. Scarani V et al Rev. Mod. Phys. 81 1301 (2009)
  6. Xu F et al Rev. Mod. Phys. 92 025002 (2020)
  7. Portmann Ch, Renner R Rev. Mod. Phys. 94 025008 (2022)
  8. Lu C-Y et al Rev. Mod. Phys. 94 035001 (2022)
  9. Azuma K et al Rev. Mod. Phys. 95 045006 (2023)
  10. Kahn D The Codebreakers: The Story Of Secret Writing (New York: McMillan, 1967)
  11. Bauer F L Decrypted Secrets: Methods And Maxims Of Cryptology 3rd ed. rev. and updated (Berlin: Springer-Verlag, 2002)
  12. Soboleva T A Istoriya Shifroval’nogo Dela V Rossii (The History Of Encryption In Russia) (Moscow: OLMA-PRESS, 2002)
  13. Champollion J-F O Egipetskom Ieroglificheskom Alfavite (On The Egyptian Hieroglyphic Alphabet, Ser. Classics of Science, Translation, Editing, and Commentary by I.G. Livshits) (Moscow-Leningrad: Izd. AN SSSR, 1950)
  14. Vernam G S J. Am. IEE 45 109 (1926); Vernam G S Reprint Bell Telephone Laboratories B-198, June 1926 (1926)
  15. Bellovin G S Cryptologia 35 203 (2011)
  16. Kotel’nikov V A "Osnovnye polozheniya avtomaticheskoi shifrovki (Basic provisions of automatic encryption)" Report of June 19, 1941 (1941); published in, Kotel’nikov V A Sobranie Trudov (Collected Works) Vol. 1 Radiofizika, Informatika, Telekommunikatsii (Radiophysics, Informatics, Telecommunications) (Moscow: Fizmatlit, 2008) p. 153
  17. Nauchnaya sessiya Otdeleniya fizicheskikh nauk Rossiiskoi Akademii nauk, posvyashchennaya pamyati akademika Vladimira Aleksandrovicha Kotel’nikova (22 fevralya 2006 g., Scientific session of the Division of Physical Sciences of the Russian Academy of Sciences, in commemoration of Academician Vladimir Aleksandrovich Kotel’nikov (22 February 2006)), Gulyaev Yu V Phys. Usp. 49 725 (2006); Nauchnaya sessiya Otdeleniya fizicheskikh nauk Rossiiskoi Akademii nauk, posvyashchennaya pamyati akademika Vladimira Aleksandrovicha Kotel’nikova (22 fevralya 2006 g., Scientific session of the Division of Physical Sciences of the Russian Academy of Sciences, in<?twb> commemoration of Academician Vladimir Aleksandrovich Kotel’nikov (22 February 2006)): Gulyaev Yu V Usp. Fiz. Nauk 176 751 (2006); Kotel’nikova N V Phys. Usp. 49 727 (2006); Kotel’nikova N V Usp. Fiz. Nauk 176 753 (2006); Armand N A Phys. Usp. 49 744 (2006); Armand N A Usp. Fiz. Nauk 176 770 (2006); Sachkov V N Phys. Usp. 49 748 (2006); Sachkov V N Usp. Fiz. Nauk 176 775 (2006); Molotkov S N Phys. Usp. 49 750 (2006); Molotkov S N Usp. Fiz. Nauk 176 777 (2006); Chertok B E Phys. Usp. 49 761 (2006); Chertok B E Usp. Fiz. Nauk 176 788 (2006)
  18. Kotel’nikov V A "O propusknoi sposobnosti ’efira’ i provoloki v elektrosvyazi (On the transmission capacity of ’ether’ and wire in electric communications)" Vsesoyuznyi Energeticheskii Komitet. Materialy K I Vsesoyuz. S’ezdu Po Voprosam Tekhnicheskoi Rekonstruktsii Dela Svyazi I Razvitiya Slabotochnoi Promyshlennosti, 1932, Moskva (All-Union Energy Committee. Materials For The 1st All-Union Congress On Technical Reconstruction Of Communications And Development Of The Low-Current Industry, 1932, Moscow) (Moscow: Upravlenie Svyazi RKKA, 1933) p. 1; reprinted in, Kotel’nikov V A O Propusknoi Sposobnosti ’Efira’ I Provoloki V Elektrosvyazi (On The Transmission Capacity Of ’Ether’ And Wire In Electric Communications) (Moscow: Inst. Radiotekhniki i Elektroniki MEI (TU), 2003); Kotel’nikov V A Phys. Usp. 49 736 (2006); Kotel’nikov V A Usp. Fiz. Nauk 176 762 (2006)
  19. Bissell Ch IEEE Commun. Mag. 47 (10) 24 (2009)
  20. Shannon C E "A mathematical theory of cryptography" Bell System Technical Memo MM 45-110-02, dated Sept. 1 1945 (1945) p. 86, Part III of original document; Shannon C E https://www.iacr.org/museum/shannon/shannon45.pdf
  21. Schneier B Applied Cryptography. Protocols, Algorithms, And Source Code In C (New York: John Wiley and Sons, 1996); Translated into Russian, Schneier B Prikladnaya Kriptografiya. Protokoly, Algoritmy, Iskhodnye Teksty Na Yazyke Si (Moscow: Triumf, 2012)
  22. Konheim A G Computer Security And Cryptography (Hoboken, NJ: John Wiley and Sons, 2007)
  23. Arbekov I M, Molotkov S N Matem. Voprosy Kriptografii 14 (3) 9 (2023)
  24. Wiesner S "Conjugate Coding", (manuscript circa 1970); subsequently published in, Wiesner S ACM SIGACT News 15 (1) 78 (1983)
  25. Shor P W "Algorithms for quantum computation: discrete logarithms and factoring" Proc. of the 35th Annual Symp. on Foundations of Computer Science, Santa Fe, NM, USA, 20-22 November 1994 (Ed. S Goldwasser) (Piscataway, NJ: IEEE Computer Society Press, 1994) p. 124
  26. Diffie W, Hellman M IEEE Trans. Inform. Theory 22 644 (1976)
  27. Yuen H P arXiv:1109.2675
  28. Renner R arXiv:1209.2423
  29. Wilde M M arXiv:1106.1445v6, corrected version of 2 Dec. 2015
  30. Arbekov I M, Molotkov S N J. Exp. Theor. Phys. 125 50 (2017); Arbekov I M, Molotkov S N Zh. Eksp. Teor. Fiz. 152 62 (2017)
  31. Arbekov I M Matem. Voprosy Kriptografii 7 (1) 39 (2016)
  32. Molotkov S N J. Exp. Theor. Phys. 123 784 (2016); Molotkov S N Zh. Eksp. Teor. Fiz. 150 903 (2016)
  33. Arbekov I M Elementarnaya Kvantovaya Kriptografiya: Dlya Kriptografov, Ne Znakomykh S Kvantovoi Mekhanikoi (Elementary Quantum Cryptography: For Cryptographers Unfamiliar With Quantum Mechanics, Basics of Information Security, No. 23) (Moscow: URSS. LENAND, 2022)
  34. Cederlöf J, Larsson J-A IEEE Trans. Inform. Theory 54 1735 (2008)
  35. Abidin A, Larsson J-A Int. J. Quantum Inform. 7 1047 (2009)
  36. Peev M et al Int. J. Quantum Inform. 7 1401 (2009)
  37. Pacher C et al Quantum Inform. Process. 15 327 (2016)
  38. Wegman M N, Carter J L J. Comput. Syst. Sci. 22 265 (1981)
  39. Simmons G J Proc. IEEE 76 603 (1988)
  40. Atici M, Stinson D R "Universal hashing and multiple authentication" Advances in Cryptology, CRYPTO’96. 16th Annual Intern. Cryptology Conf., Santa Barbara, California, USA, August 18-22, 1996, Proc. (Lecture Notes in Computer Science) Vol. 1109 (Ed. N Koblitz) (Berlin: Springer-Verlag, 1996) p. 16
  41. Bierbrauer J et al "On families of hash functions via geometric codes and concatenation" Advances in Cryptology, CRYPTO’93. 13th Annual Intern. Cryptology Conf., Santa Barbara, California, USA, August 22-26, 1993, Proc. (Lecture Notes in Computer Science) Vol. 773 (Ed. D R Stinson) (Berlin: Springer-Verlag, 1994) p. 331
  42. den Boer B J. Comput. Security 2 65 (1993)
  43. Krawczyk H "LFSR-based hashing and authentication" Advances in Cryptology, CRYPTO’94. 14th Annual Intern. Cryptology Conf., Santa Barbara, California, USA, August 21-25, 1994, Proc. (Lecture Notes in Computer Science) Vol. 839 (Ed. Y G Desmedt) (Berlin: Springer-Verlag, 1994) p. 129
  44. Krawczyk H "New hash functions for message authentication" Advances in Cryptology, EUROCRYPT’95. Intern. Conf. on the Theory and Application of Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995. Proc. (Lecture Notes in Computer Science) Vol. 921 (Eds L C Guillou, J-J Quisquater) (Berlin: Springer-Verlag, 1995) p. 301
  45. Stinson D R "Universal hashing and authentication codes" Advances In Cryptology, CRYPTO’91. Proc. (Lecture Notes in Computer Science) Vol. 576 (Ed. J Feigenbaum) (Berlin: Springer, 1992) p. 74
  46. Stinson D R J. Comput. Syst. Sci. 48 337 (1994)
  47. Stinson D R Congressus Numerantium 114 7 (1996)
  48. Stinson D R J. Combin. Math. Combin. Comput. 42 3 (2002)
  49. Abidin A, Larsson J-Å "New universal hash functions" Research In Cryptology. 4th Western European Workshop, WEWoRC 2011, Weimar, Germany, July 20-22, 2011, Revised Selected Papers (Lecture Notes in Computer Science) Vol. 7242 (Eds F Armknecht, S Lucks) (Berlin: Springer, 2012) p. 99
  50. Rogaway P J. Cryptology 12 91 (1999)
  51. Abidin A, Larsson J-Å Quantum Inform. Process. 13 2155 (2014)
  52. Portmann Ch IEEE Trans. Inform. Theory 60 4383 (2014)
  53. Canetti R "Universally composable security: a new paradigm for cryptographic protocols" Proc. 42nd IEEE Symp. on Foundations of Computer Science, 08-11 October 2001, Newport Beach, CA, USA (Piscataway, NJ: IEEE, 2001) p. 136
  54. Canetti R et al "Universally composable security with global setup" Theory of Cryptography. 4th Theory of Cryptography Conf., TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proc. (Lecture Notes in Computer Science) Vol. 4392 (Ed. S P Vadhan) (Berlin: Springer, 2007) p. 61
  55. Müller-Quade J, Renner R New J. Phys. 11 085006 (2009)
  56. Maurer U, Renner R "Abstract cryptography" Proc. of the Second Symp. on Innovations in Computer Science, ICS 2011, Beijing, China (Beijing: Tsinghua Univ. Press, 2011) p. 1
  57. Renner R "Security of quantum key distribution" PhD Thesis (Zürich: ETH, 2005)
  58. Molotkov S N J. Exp. Theor. Phys. 133 272 (2021); Molotkov S N Zh. Eksp. Teor. Fiz. 160 327 (2021)
  59. Molotkov S N Laser Phys. Lett. 19 045201 (2022)
  60. Molotkov S N Laser Phys. 34 045202 (2024)
  61. Herrero-Collantes M, Garcia-Escartin J C Rev. Mod. Phys. 89 015004 (2017)
  62. Arbekov I M, Molotkov S N Phys. Usp. 64 617 (2021); Arbekov I M, Molotkov S N Usp. Fiz. Nauk 191 651 (2021)
  63. Arbekov I M, Molotkov S N Phys. Usp. 67 919 (2024); Arbekov I M, Molotkov S N Usp. Fiz. Nauk 194 974 (2024)
  64. Balygin K A, Kulik S P, Molotkov S N JETP Lett. 119 538 (2024); Balygin K A, Kulik S P, Molotkov S N Pis’ma Zh. Eksp. Teor. Fiz. 119 533 (2024)
  65. Einstein A, Podolsky B, Rosen N Phys. Rev. 47 777 (1935)
  66. Bell J S Physics 1 195 (1964)
  67. Bell J S Rev. Mod. Phys. 38 447 (1966)
  68. Bell J S (Introduction by Aspect A) "Free variables and local causality" Speakable And Unspeakable In Quantum Mechanics: Collected Papers On Quantum Philosophy 2nd ed. (Cambridge: Cambridge Univ. Press, 2004) p. 100-104, Ch. 12
  69. Kochen S, Specker E P J. Math. Mech. 17 59 (1967)
  70. Colbeck R, Renner R Nat. Commun. 2 411 (2011)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions