Issues

 / 

2024

 / 

August

  

On the 90th anniversary of the Lebedev Physics Institute of the Russian Academy of Sciences (LPI). Reviews of topical problems


Conditions for the generation of runaway electrons in an air gap with an inhomogeneous electric field: theory and experiment

  a, b,   a, §  a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation

Conditions for the generation of runaway electrons (RAEs) in a magnetically insulated coaxial air diode with graphite cathodes of different geometries — needle and conical with a Taylor opening half angle of 49.3ˆ — are compared. The axial magnetic field allows the RAE beam to be focused on a current probe collector, thereby increasing the sensitivity of the recording technique in use. The threshold RAE generation voltage for the Taylor cone is found to be lower than that for the needle (i.e., a cone with a small opening angle), which indicates its nonmonotonic angular dependence with a minimum at an angle not exceeding the Taylor angle. According to our estimates, the dynamics of free electrons change qualitatively at the Taylor angle. At large angles, they accelerate throughout the entire gap; at smaller angles, they accelerate near the cathode and then slow down at the periphery.

Fulltext pdf (395 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.11.039608
Keywords: runaway electrons, air diodes, inhomogeneous electric fields, guiding magnetic fields, pulsed breakdown, conical cathodes, Taylor angle
PACS: 51.50.+v, 52.80.−s, 79.70.+q (all)
DOI: 10.3367/UFNe.2023.11.039608
URL: https://ufn.ru/en/articles/2024/8/e/
Citation: Zubarev N M, Mesyats G A, Yalandin M I "Conditions for the generation of runaway electrons in an air gap with an inhomogeneous electric field: theory and experiment" Phys. Usp. 67 803–813 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, October 2023, revised: 15th, November 2023, 28th, November 2023

Оригинал: Зубарев Н М, Месяц Г А, Яландин М И «Условия генерации убегающих электронов в воздушном зазоре с неоднородным электрическим полем: теория и эксперимент» УФН 194 853–864 (2024); DOI: 10.3367/UFNr.2023.11.039608

References (72) ↓ Cited by (1)

  1. Wilson C T R Proc. Phys. Soc. London 37 32D (1924)
  2. Dreicer H Phys. Rev. 115 238 (1959)
  3. Gurevich A V Sov. Phys. JETP 12 904 (1961); Gurevich A V Zh. Eksp. Teor. Fiz. 39 1296 (1960)
  4. Frankel S et al Nucl. Instrum. Meth. 44 345 (1966)
  5. Stankevich Yu L, Kalinin V G Sov. Phys. Dokl. 12 1042 (1968); Stankevich Yu L, Kalinin V G Dokl. Akad. Nauk SSSR 177 (1) 72 (1967)
  6. Kremnev V V, Kurbatov Yu A Sov. Phys. Tech. Phys. 17 626 (1972); Kremnev V V, Kurbatov Yu A Zh. Tekh. Fiz. 42 795 (1972)
  7. Tarasova L V et al Sov. Phys. Tech. Phys. 19 351 (1974); Tarasova L V et al Zh. Tekh. Fiz. 44 564 (1974)
  8. Mesyats G A, Bychkov Yu I, Kremnev V V Sov. Phys. Usp. 15 282 (1972); Mesyats G A, Bychkov Yu I, Kremnev V V Usp. Fiz. Nauk 107 201 (1972)
  9. Mesyats G A et al Tech. Phys. Lett. 34 169 (2008); Mesyats G A et al Pis’ma Zh. Tekh. Fiz. 34 (4) 71 (2008)
  10. Tarasenko V F et al Rev. Sci. Instrum. 83 086106 (2012)
  11. Tarasenko V F, Rybka D V High Voltage 1 (1) 43 (2016)
  12. Mesyats G A et al Appl. Phys. Lett. 116 063501 (2020)
  13. Tarasenko V F, Beloplotov D V, Sorokin D A Tech. Phys. 67 586 (2022); Tarasenko V F, Beloplotov D V, Sorokin D A Zh. Tekh. Fiz. 92 694 (2022)
  14. Mesyats G A et al IEEE Electron Device Lett. 43 627 (2022)
  15. Mesyats G A et al IEEE Trans. Plasma Sci. 36 2497 (2008)
  16. Tarasenko V F et al Tech. Phys. Lett. 29 879 (2003); Tarasenko V F et al Pis’ma Zh. Tekh. Fiz. 29 (21) 1 (2003)
  17. Akishev Yu et al J. Phys. D 51 394003 (2018)
  18. Tarasenko V F et al JETP Lett. 102 350 (2015); Tarasenko V F et al Zh. Eksp. Teor. Fiz. 102 388 (2015)
  19. Kozyrev A et al Europhys. Lett. 114 45001 (2016)
  20. Lobanov L N et al IEEE Electron Device Lett. 44 1748 (2023)
  21. Alekseev S B, Orlovskii V M, Tarasenko V F Tech. Phys. Lett. 29 411 (2003); Alekseev S B, Orlovskii V M, Tarasenko V F Pis’ma Zh. Tekh. Fiz. 29 (10) 29 (2003)
  22. Tarasenko V F, Orlovskii V M, Shunailov S A Russ. Phys. J. 46 325 (2003); Tarasenko V F, Orlovskii V M, Shunailov S A Izv. Vyssh. Uchebn. Zaved. Fiz. 46 (3) 94 (2003)
  23. Babich L P, Loiko T V, Tsukerman V A Sov. Phys. Usp. 33 521 (1990); Babich L P, Loiko T V, Tsukerman V A Usp. Fiz. Nauk 160 (7) 49 (1990)
  24. Korolev Yu D, Mesyats G A Fizika Impul’snogo Proboya Gazov (Physics Of Pulsed Gas Breakdown) (Moscow: Nauka, 1991)
  25. Dwyer J R, Smith D M, Cummer S A Space Sci. Rev. 173 133 (2012)
  26. Babich L P High-Energy Phenomena Iin Electric Discharges Iin Dense Gases: Theory, Experiment, And Natural Phenomena (Arlington, TX: Futurepast, 2003)
  27. Mesyats G A Phys. Usp. 49 1045 (2006); Mesyats G A Usp. Fiz. Nauk 176 1069 (2006)
  28. Lisenkov V V et al Tech. Phys. 63 1872 (2018); Lisenkov V V et al Zh. Tekh. Fiz. 88 1912 (2018)
  29. Bakhov K I, Babich L P, Kutsyk I M IEEE Trans. Plasma Sci. 28 1254 (2000)
  30. Babich L, Bochkov E J. Phys. D 54 465205 (2021)
  31. Wen Z et al IEEE Trans. Plasma Sci. 51 2124 (2023)
  32. Peterson L R, Green A E S J. Phys. B 1 1131 (1968)
  33. Mesyats G A et al Plasma Phys. Rep. 38 29 (2012); Mesyats G A et al Fiz. Plazmy 38 34 (2012)
  34. Shao T et al Laser Part. Beams 30 369 (2012)
  35. Erofeev M V et al Tech. Phys. 58 200 (2013); Erofeev M V et al Zh. Tekh. Fiz. 83 (2) 52 (2013)
  36. Zubarev N M et al J. Phys. D 51 284003 (2018)
  37. Beloplotov D V et al Tech. Phys. 66 548 (2021); Beloplotov D V et al Zh. Tekh. Fiz. 91 589 (2021)
  38. Lobanov L N et al Phys. Plasmas 31 063102 (2024)
  39. Zubarev N M, Mesyats G A, Yalandin M I JETP Lett. 105 537 (2017); Zubarev N M, Mesyats G A, Yalandin M I Pis’ma Zh. Eksp. Teor. Fiz. 105 515 (2017)
  40. Zubarev N M, Zubareva O V, Yalandin M I Electronics 11 2771 (2022)
  41. Mamontov Yu I, Zubarev N M, Uimanov I V IEEE Trans. Plasma Sci. 49 2589 (2021)
  42. Zubarev N M, Zubareva O V, Yalandin M I Tech. Phys. 68 1204 (2023); Zubarev N M, Zubareva O V, Yalandin M I Zh. Tekh. Fiz. 93 1298 (2023)
  43. Zubarev N M, Zubareva O V, Yalandin M I Tech. Phys. Lett. 49 (9) 64 (2023); Zubarev N M, Zubareva O V, Yalandin M I Pis’ma Zh. Tekh. Fiz. 49 (18) 24 (2023)
  44. Tkachev A N, Yakovlenko S I Tech. Phys. Lett. 29 683 (2003); Tkachev A N, Yakovlenko S I Pis’ma Zh. Tekh. Fiz. 29 (16) 54 (2003)
  45. Tkachev A N, Yakovlenko S I JETP Lett. 77 221 (2003); Tkachev A N, Yakovlenko S I Pis’ma Zh. Eksp. Teor. Fiz. 77 264 (2003)
  46. Tarasenko V F, Yakovlenko S I Phys. Usp. 47 887 (2004); Tarasenko V F, Yakovlenko S I Usp. Fiz. Nauk 174 953 (2004)
  47. Zhang C et al Laser Part. Beams 31 353 (2013)
  48. Baksht E Kh, Burachenko A G, Tarasenko V F Tech. Phys. 60 1645 (2015); Baksht E Kh, Burachenko A G, Tarasenko V F Zh. Tekh. Fiz. 85 (11) 73 (2015)
  49. Gashkov M A et al JETP Lett. 113 370 (2021); Gashkov M A et al Pis’ma Zh. Eksp. Teor. Fiz. 113 370 (2021)
  50. Mesyats G A et al Electronics 11 248 (2022)
  51. Yalandin M I et al IEEE Trans. Instrum. Measur. 72 1008808 (2023)
  52. Askar’yan G A Trudy Fiz. Inst. Akad. Nauk SSSR 66 66 (1973)
  53. Bethe H Ann. Physik 397 325 (1930)
  54. Zubarev N M, Zubareva O V, Yalandin M I Dokl. Phys. 68 279 (2023); Zubarev N M, Zubareva O V, Yalandin M I Dokl. Ross. Akad. Nauk. Fiz. Tekh. Nauki 512 (1) 5 (2023)
  55. Taylor G I Proc. R. Soc. London A 280 383 (1964)
  56. Zhakin A I Phys. Usp. 56 141 (2013); Zhakin A I Usp. Fiz. Nauk 183 153 (2013)
  57. Zubarev N M JETP Lett. 73 544 (2001); Zubarev N M Pis’ma Zh. Eksp. Teor. Fiz. 73 613 (2001)
  58. Suvorov V G, Zubarev N M J. Phys. D 37 289 (2004)
  59. Schonland B F J Proc. R. Soc. London A 104 235 (1923)
  60. Kunhardt E E, Byszewski W W Phys. Rev. A 21 2069 (1980)
  61. Belomyttsev S Ya et al Tech. Phys. Lett. 34 367 (2008); Belomyttsev S Ya et al Pis’ma Zh. Tekh. Fiz. 34 (9) 10 (2008)
  62. Levko D et al J. Appl. Phys. 111 013303 (2012)
  63. Zubarev N M et al Plasma Sources Sci. Technol. 29 125008 (2020)
  64. Shpak V G et al Instrum. Exper. Techn. 36 (1) 106 (1993); Shpak V G et al Prib. Tekh. Eksp. (1) 149 (1993)
  65. Yalandin M I et al IEEE Trans. Plasma Sci. 30 1700 (2002)
  66. Sharypov K A et al Rev. Sci. Instrum. 85 125104 (2014)
  67. Belomyttsev S Ya et al J. Appl. Phys. 119 023304 (2016)
  68. Korovin S D et al Tech. Phys. Lett. 30 813 (2004); Korovin S D et al Pis’ma Zh. Tekh. Fiz. 30 (19) 30 (2004)
  69. Yalandin M I et al IEEE Trans. Plasma Sci. 38 2559 (2010)
  70. Wu Y C et al Rev. Sci. Instrum. 83 026101 (2012)
  71. Fomel B M, Tiunov M A, Yakovlev V P "SAM - an interactive code for electron gun evaluation" Budker INP 96-11 (Novosibirsk: Budker Institute of Nuclear Physics SB RAS, 1996)
  72. Belomyttsev S Ya, Romanchenko I V, Rostov V V Russ. Phys. J. 51 299 (2008); Belomyttsev S Ya, Romanchenko I V, Rostov V V Izv. Vyssh. Uchebn. Zaved. Fiz. (3) 71 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions