On the 90th anniversary of the Lebedev Physics Institute of the Russian Academy of Sciences (LPI). Reviews of topical problems
Conditions for the generation of runaway electrons in an air gap with an inhomogeneous electric field: theory and experiment
N.M. Zubarev†a,b,
G.A. Mesyats‡a,
M.I. Yalandin§a,b aLebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation bInstitute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation
Conditions for the generation of runaway electrons (RAEs) in a magnetically insulated coaxial air diode with graphite cathodes of different geometries — needle and conical with a Taylor opening half angle of 49.3ˆ — are compared. The axial magnetic field allows the RAE beam to be focused on a current probe collector, thereby increasing the sensitivity of the recording technique in use. The threshold RAE generation voltage for the Taylor cone is found to be lower than that for the needle (i.e., a cone with a small opening angle), which indicates its nonmonotonic angular dependence with a minimum at an angle not exceeding the Taylor angle. According to our estimates, the dynamics of free electrons change qualitatively at the Taylor angle. At large angles, they accelerate throughout the entire gap; at smaller angles, they accelerate near the cathode and then slow down at the periphery.
Keywords: runaway electrons, air diodes, inhomogeneous electric fields, guiding magnetic fields, pulsed breakdown, conical cathodes, Taylor angle PACS:51.50.+v, 52.80.−s, 79.70.+q (all) DOI:10.3367/UFNe.2023.11.039608 URL: https://ufn.ru/en/articles/2024/8/e/ Citation: Zubarev N M, Mesyats G A, Yalandin M I "Conditions for the generation of runaway electrons in an air gap with an inhomogeneous electric field: theory and experiment" Phys. Usp.67 803–813 (2024)
Alekseev S B, Orlovskii V M, Tarasenko V F Tech. Phys. Lett.29 411 (2003); Alekseev S B, Orlovskii V M, Tarasenko V F Pis’ma Zh. Tekh. Fiz.29 (10) 29 (2003)
Tarasenko V F, Orlovskii V M, Shunailov S A Russ. Phys. J.46 325 (2003); Tarasenko V F, Orlovskii V M, Shunailov S A Izv. Vyssh. Uchebn. Zaved. Fiz.46 (3) 94 (2003)
Zubarev N M, Zubareva O V, Yalandin M I Tech. Phys.68 1204 (2023); Zubarev N M, Zubareva O V, Yalandin M I Zh. Tekh. Fiz.93 1298 (2023)
Zubarev N M, Zubareva O V, Yalandin M I Tech. Phys. Lett.49 (9) 64 (2023); Zubarev N M, Zubareva O V, Yalandin M I Pis’ma Zh. Tekh. Fiz.49 (18) 24 (2023)
Tkachev A N, Yakovlenko S I Tech. Phys. Lett.29 683 (2003); Tkachev A N, Yakovlenko S I Pis’ma Zh. Tekh. Fiz.29 (16) 54 (2003)
Tkachev A N, Yakovlenko S I JETP Lett.77 221 (2003); Tkachev A N, Yakovlenko S I Pis’ma Zh. Eksp. Teor. Fiz.77 264 (2003)
Fomel B M, Tiunov M A, Yakovlev V P "SAM - an interactive code for electron gun evaluation" Budker INP 96-11 (Novosibirsk: Budker Institute of Nuclear Physics SB RAS, 1996)
Belomyttsev S Ya, Romanchenko I V, Rostov V V Russ. Phys. J.51 299 (2008); Belomyttsev S Ya, Romanchenko I V, Rostov V V Izv. Vyssh. Uchebn. Zaved. Fiz. (3) 71 (2008)