Issues

 / 

2024

 / 

March

  

Methodological notes


On the problem of detecting Majorana fermions in heat capacity and Hall effect measurements in the Kondo insulator YbB12

  a, b,   a, §  c, *  d, a, e, #  a
a Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
e HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

We show that the separation of contributions to low-temperature heat capacity and the Hall effect, carried out in Phys. Rev. Lett. 120 257206 (2018), Nat. Phys. 15 954 (2019), Phys. Rev. X 12 021050 (2022), leads to unfounded conclusions about (i) the formation of uncharged quasiparticles (Majorana fermions) and (ii) the transition, as the magnetic field increases, to the metallic state with heavy fermions in the YbB12 semiconductor with strong electronic correlations. We obtain an alternative explanation of the experimental data in terms of the filamentary structure of conducting channels in the semiconductor matrix of ytterbium-based dodecaborides. Such channels (charge stripes) are nanoscale electron-density inhomogeneities and form manybody states near the Fermi level.

Fulltext pdf (1.7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.06.039405
Keywords: Kondo insulators, electronic phase separation, dynamical charge stripes
PACS: 71.27.+a, 73.22.−f, 75.47.−m (all)
DOI: 10.3367/UFNe.2023.06.039405
URL: https://ufn.ru/en/articles/2024/3/f/
001222840200006
2-s2.0-85191841413
2024PhyU...67..314A
Citation: Azarevich A N, Bogach A V, Gavrilkin S Yu, Demishev S V, Sluchanko N E "On the problem of detecting Majorana fermions in heat capacity and Hall effect measurements in the Kondo insulator YbB12" Phys. Usp. 67 314–321 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, May 2023, 20th, June 2023

Оригинал: Азаревич А Н, Богач А В, Гаврилкин С Ю, Демишев С В, Случанко Н Е «К вопросу о детектировании майорановских фермионов при измерениях теплоёмкости и эффекта Холла в кондо-изоляторе YbB12» УФН 194 336–343 (2024); DOI: 10.3367/UFNr.2023.06.039405

References (50) ↓ Similar articles (3)

  1. Lu F et al Phys. Rev. Lett. 110 096401 (2013)
  2. Weng H M et al Phys. Rev. Lett. 112 016403 (2014)
  3. Hagiwara K et al Nat. Commun. 7 12690 (2016)
  4. Iga F et al Solid State Commun. 50 903 (1984)
  5. Kasuya T et al J. Magn. Magn. Mater. 31-34 447 (1983)
  6. Yamaguchi J et al Phys. Rev. B 79 125121 (2009)
  7. Hagiwara K et al J. Phys. Conf. Ser. 807 012003 (2017)
  8. Rousuli A et al J. Phys. Condens. Matter 29 265601 (2017)
  9. Iga F, Shimizu N, Takabatake T J. Magn. Magn. Mater. 177-181 337 (1998)
  10. Sluchanko N E Rare-Earth Borides (Ed. D S Inosov) (Singapore: Jenny Stanford Publ., 2021) p. 331; Sluchanko N E arXiv:2004.06371
  11. Sato Y Quantum Oscillations And Charge-Neutral Fermions In Topological Kondo Insulator YbB12 (Springer Theses) (Singapore: Springer, 2021)
  12. Xiang Z et al Nat. Phys. 17 788 (2021)
  13. Xiang Z et al Science 362 65 (2018)
  14. Sato Y et al J. Phys. D 54 404002 (2021)
  15. Sato Y et al Nat. Phys. 15 954 (2019)
  16. Coleman P, Miranda E, Tsvelik A Physica B 186-188 362 (1993)
  17. Coleman P, Miranda E, Tsvelik A Phys. Rev. B 49 8955 (1994)
  18. Coleman P, Ioffe L B, Tsvelik A M Phys. Rev. B 52 6611 (1995)
  19. Erten O et al Phys. Rev. Lett. 119 057603 (2017)
  20. Varma C M Phys. Rev. B 102 155145 (2020)
  21. Heath J T, Bedell K S J. Phys. Condens. Matter 32 485602 (2020)
  22. Sodemann I, Chowdhury D, Senthil T Phys. Rev. B 97 045152 (2018)
  23. Chowdhury D, Sodemann I, Senthil T Nat. Commun. 9 1766 (2018)
  24. Rao P, Sodemann I Phys. Rev. B 100 155150 (2019)
  25. Czopnik A et al J. Phys. Condens. Matter 17 5971 (2005)
  26. Bolotina N B et al J. Phys. Chem. Solids 129 434 (2019)
  27. Okamura H et al Phys. Rev. B 62 R13265 (2000)
  28. Jäger B et al J. Phys. Condens. Matter 18 2525 (2006)
  29. Sluchanko N et al J. Supercond. Nov. Magn. 26 1663 (2013)
  30. Czopnik A et al J. Solid State Chem. 177 507 (2004)
  31. Azarevich A et al Phys. Rev. B 103 104515 (2021)
  32. Menushenkov A P et al JETP Lett. 98 165 (2013); Menushenkov A P et al Pis’ma Zh. Eksp. Teor. Fiz 98 187 (2013)
  33. Rybina A V et al Phys. Rev. B 82 024302 (2010)
  34. Bolotina N et al Acta Cryst. B 76 1117 (2020)
  35. Alekseev P A et al Phys. Rev. B 89 115121 (2014)
  36. Sluchanko N E et al J. Exp. Theor. Phys. 115 509 (2012); Sluchanko N E et al Zh. Eksp. Teor. Fiz. 142 574 (2012)
  37. Bogach A V et al J. Exp. Theor. Phys. 116 838 (2013); Bogach A V et al Zh. Eksp. Teor. Fiz. 143 965 (2013)
  38. Altshuler T S et al Phys. Rev. B 68 014425 (2003)
  39. Azarevich A et al Chinese Phys. Lett. 39 127302 (2022)
  40. Terashima T T et al Phys. Rev. Lett. 120 257206 (2018)
  41. Gschneidner K A (Jr.) et al Physica B 163 507 (1990)
  42. Coles B R Physica B 223-224 260 (1996)
  43. Xiang Z et al Phys. Rev. X 12 021050 (2022)
  44. Sluchanko N et al Phys. Rev. B 103 035117 (2021)
  45. Khoroshilov A L et al Molecules 28 676 (2023)
  46. Sluchanko N E et al J. Phys. Condens. Matter 31 065604 (2019)
  47. Bolotina N B et al Rare-Earth Borides (Ed. D S Inosov) (Singapore: Jenny Stanford Publ., 2021) p. 293; Bolotina N B et al arXiv:2010.16239
  48. Hurd C M Adv. Phys. 23 315 (1974)
  49. Koblischka M R, Winter M, Hartmann U Supercond. Sci. Technol. 20 681 (2007)
  50. Janeček I, Vašek P cond-mat/0306560

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions