Issues

 / 

2024

 / 

December

  

Methodological notes


Electromagnetic waves in a tangentially magnetized bi-gyrotropic layer (with an example of analysis of spin wave characteristics in a ferrite plate)

 ,  
Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation

We discuss difficulties arising from the description of spin waves in the magnetostatic approximation, in which neither the microwave electric field nor the Poynting vector is associated with the wave. To overcome these difficulties, we present for the first time a correct solution to the problem of electromagnetic wave propagation in an arbitrary direction along a tangentially magnetized bi-gyrotropic layer (a special case of this problem is the propagation of spin waves in a ferrite plate). It is shown that the wave distribution over the layer thickness is described by two different wave numbers kx21 and kx22, which can take real or imaginary values; in particular, three types of spin wave distributions can occur inside the ferrite plate — surface-surface (when kx21 and kx22 are real numbers), volume-surface (kx21 is imaginary and kx22 is real), and volume-volume (kx21 and kx22 are imaginary numbers), which fundamentally distinguishes the obtained description of spin waves from their description in the magnetostatic approximation.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: spin waves, ferrite plates, electromagnetic waves, bi-gyrotropic layers, wave distribution over layer thickness
PACS: 41.20.Gz, 41.20.Jb, 75.70.−i (all)
DOI: 10.3367/UFNe.2024.09.039768
URL: https://ufn.ru/en/articles/2024/12/i/
Citation: Lock E H, Gerus S V "Electromagnetic waves in a tangentially magnetized bi-gyrotropic layer (with an example of analysis of spin wave characteristics in a ferrite plate)" Phys. Usp. 67 (12) (2024)

Received: 30th, January 2024, revised: 9th, September 2024, 23rd, September 2024

Оригинал: Локк Э Г, Герус С В «Электромагнитные волны в касательно намагниченном бигиротропном слое (с примером анализа характеристик спиновых волн в ферритовой пластине)» УФН 194 1330–1344 (2024); DOI: 10.3367/UFNr.2024.09.039768

References (48) ↓ Similar articles (20)

  1. Gurevich A G Ferrity na Sverkhvysokikh Chastotakh (M.: Fizmatgiz, 1960)
  2. Lax B, Button K J Microwave Ferrites And Ferrimagnetics (New York: McGraw-Hill, 1962)
  3. Agranovich V M, Ginzburg V L Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (M.: Nauka, 1965); Per. na angl. yaz., Agranovich V M, Ginzburg V L Crystal Optics With Spatial Dispersion, And Excitons (Berlin: Springer-Verlag, 1984)
  4. Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spinovye Volny (M.: Nauka, 1967); Per. na angl. yaz., Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spin Waves (Amsterdam: North-Holland Publ. Co., 1968)
  5. Born M, Wolf E Principles Of Optics (Oxford: Pergamon Press, 1969); Per. na russk. yaz., Born M, Vol’f E Osnovy Optiki (M.: Mir, 1970)
  6. Ginzburg V L, Rukhadze A A Volny v Magnitoaktivnoi Plazme 2-e izd. (M.: Nauka, 1975)
  7. Landsberg G S Optika (M.: Nauka, 1976)
  8. Felsen L B, Marcuvitz N Radiation And Scattering Of Waves (Englewood Cliffs, NJ: Prentice-Hall, 1973); Per. na russk. yaz., Felsen L, Markuvits N Izluchenie i Rasseyanie Voln Vol. 2 (M.: Mir, 1978)
  9. Vinogradova M B, Rudenko O V, Sukhorukov A P Teoriya Voln (M.: Nauka, 1990)
  10. Vashkovskii A V, Stal’makhov V S, Sharaevskii Yu P Magnitostaticheskie Volny v Elektronike Sverkhvysokikh Chastot (Saratov: Izd-vo Saratovskogo un-ta, 1993)
  11. Gurevich A G, Melkov G A Magnitnye Kolebaniya i Volny (M.: Nauka, 1994); Per. na angl. yaz., Gurevich A G, Melkov G A Magnetization Oscillations And Waves (Boca Raton, FL: CRC Press, 1996)
  12. Stancil D D, Prabhakar A Spin Waves. Theory And Applications (New York: Springer, 2009)
  13. Lokk E G Usp. Fiz. Nauk 178 397 (2008); Lock E H Phys. Usp. 51 375 (2008)
  14. Mandel’shtam L I Lektsii Po Optike, Teorii Otnositel’nosti i Kvantovoi Mekhanike (M.: Nauka, 1972)
  15. Lokk E G, Gerus S V, Annenkov A Yu Radiotekh. 67 567 (2022); Lock E H, Gerus S V, Annenkov A Yu J. Commun. Technol. Electron. 67 649 (2022)
  16. Lokk E G Usp. Fiz. Nauk 182 1327 (2012); Lock E H Phys. Usp. 55 1239 (2012)
  17. Annenkov A Yu, Gerus S V, Lock E H Europhys. Lett. 123 44003 (2018)
  18. Annenkov A Yu, Gerus S V, Lock E H EPJ Web Conf. 185 02006 (2018)
  19. Nikitov S A i dr Usp. Fiz. Nauk 185 1099 (2015); Nikitov S A et al Phys. Usp. 58 1002 (2015)
  20. Chumak A V et al Nature Phys. 11 453 (2015)
  21. Wang X S, Zhang H W, Wang X R Phys. Rev. Applied 9 024029 (2018)
  22. Nikitov S A i dr Usp. Fiz. Nauk 190 1009 (2020); Nikitov S A et al Phys. Usp. 63 945 (2020)
  23. Pirro P et al Nat. Rev. Mater. 6 1114 (2021)
  24. Chumak A V et al IEEE Trans. Magn. 58 0800172 (2022)
  25. Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spinovye Volny (M.: Nauka, 1967); Per. na angl. yaz., Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spin Waves (Amsterdam: North-Holland Publ. Co., 1968)
  26. Damon R W Eshbach J R J. Phys. Chem. Solids 19 308 (1961)
  27. Gupta S S, Srivastava N C J. Appl. Phys. 50 6697 (1979)
  28. Vendik O G, Kalinikos B A, Miteva S I Izv. Vuzov SSSR. Radioelektronika 24 (9) 52 (1981)
  29. Ruppin R J. Appl. Phys. 62 11 (1987)
  30. Danilov V V, Zavislyak I V, Balinskii M G Spinvolnovaya Elektrodinamika (Kiev: Lybid’, 1991)
  31. Vashkovskii A V, Lokk E G Radiotekhnika Elektronika 46 729 (2001); Vashkovskii A V, Lokk E G J. Commun. Technol. Electron. 46 674 (2001)
  32. Vashkovskii A V, Lokk E G Radiotekhnika Elektronika 46 1257 (2001); Vashkovskii A V, Lokk E G J. Commun. Technol. Electron. 46 1163 (2001)
  33. Vashkovskii A V, Lokk E G Radiotekhnika Elektronika 47 97 (2002); Vashkovskii A V, Lokk E G J. Commun. Technol. Electron. 47 87 (2002)
  34. Lokk E G Radiotekhnika Elektronika 48 1484 (2003); Lokk E G J. Commun. Technol. Electron. 48 1369 (2003)
  35. Vashkovskii A V, Lokk E G Radiotekhnika Elektronika 49 966 (2004); Vashkovskii A V, Lokk E G J. Commun. Technol. Electron. 49 904 (2004)
  36. Grishin S V Diss. ... kand. fiz.-mat. nauk (Saratov: Saratov. gos. un-t im. N.G. Chernyshevskogo, 2006)
  37. Vyatkina S A, Babichev R K, Ivanov V N Elektromagnitnye Volny Elektromagnitnye Sistemy (10) 64 (2011)
  38. Vashkovskii A V, Lokk E G Radiotekhnika Elektronika 57 541 (2012); Vashkovskii A V, Lokk E G J. Commun. Technol. Electron. 57 490 (2012)
  39. Vashkovskii A V, Lokk E G Usp. Fiz. Nauk 181 293 (2011); Vashkovsky A V, Lock E H Phys. Usp. 54 281 (2011)
  40. Lock E H Solid State Phenomena 233-234 476 (2015)
  41. Lokk E G Radiotekhnika Elektronika 61 35 (2016); Lokk E G J. Commun. Technol. Electron. 61 33 (2016)
  42. Lokk E G, Vashkovskii A V Radiotekhnika Elektronika 61 746 (2016); Lokk E G, Vashkovskii A V J. Commun. Technol. Electron. 61 877 (2016)
  43. Lokk E G, Gerus S V Radiotekhnika Elektronika 68 884 (2023); Lock E H, Gerus S V J. Commun. Technol. Electron. 68 971 (2023)
  44. Grishin S V, Bogomolova A V, Nikitov S A Pis’ma ZhTF 48 (5) 39 (2022); Grishin S V, Bogomolova A V, Nikitov S A Tech. Phys. Lett. 48 (3) 37 (2022)
  45. Bogomolova A V et al J. Magn. Magn. Mater. 587 171278 (2023)
  46. Amel’chenko M D et al Phys. Rev. B 108 224401 (2023)
  47. Lokk E G, Lugovskoi A V, Gerus S V Radiotekhnika Elektronika 66 662 (2021); Lock E H, Lugovskoi A V, Gerus S V J. Commun. Technol. Electron. 66 834 (2021)
  48. Stratton J A Electromagnetic Theory (Intern. Ser. in Physics) (New York: McGraw-Hill Book Co., 1941); Per. na russk. yaz., Stretton Dzh A Teoriya Elektromagnetizma (M.-L.: Gostekhizdat, 1948)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions