Electromagnetic waves in a tangentially magnetized bi-gyrotropic layer (with an example of analysis of spin wave characteristics in a ferrite plate)
E.H. Lock†,
S.V. Gerus‡ Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation
We discuss difficulties arising from the description of spin waves in the magnetostatic approximation, in which neither the microwave electric field nor the Poynting vector is associated with the wave. To overcome these difficulties, we present for the first time a correct solution to the problem of electromagnetic wave propagation in an arbitrary direction along a tangentially magnetized bi-gyrotropic layer (a special case of this problem is the propagation of spin waves in a ferrite plate). It is shown that the wave distribution over the layer thickness is described by two different wave numbers kx21 and kx22, which can take real or imaginary values; in particular, three types of spin wave distributions can occur inside the ferrite plate — surface-surface (when kx21 and kx22 are real numbers), volume-surface (kx21 is imaginary and kx22 is real), and volume-volume (kx21 and kx22 are imaginary numbers), which fundamentally distinguishes the obtained description of spin waves from their description in the magnetostatic approximation.
Typically, an English full text is available in about 1 month from the date of publication of the original article.
Keywords: spin waves, ferrite plates, electromagnetic waves, bi-gyrotropic layers, wave distribution over layer thickness PACS:41.20.Gz, 41.20.Jb, 75.70.−i (all) DOI:10.3367/UFNe.2024.09.039768 URL: https://ufn.ru/en/articles/2024/12/i/ Citation: Lock E H, Gerus S V "Electromagnetic waves in a tangentially magnetized bi-gyrotropic layer (with an example of analysis of spin wave characteristics in a ferrite plate)" Phys. Usp.67 (12) (2024)
Received: 30th, January 2024, revised: 9th, September 2024, accepted: 23rd, September 2024
Gurevich A G Ferrity na Sverkhvysokikh Chastotakh (M.: Fizmatgiz, 1960)
Lax B, Button K J Microwave Ferrites And Ferrimagnetics (New York: McGraw-Hill, 1962)
Agranovich V M, Ginzburg V L Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (M.: Nauka, 1965); Per. na angl. yaz., Agranovich V M, Ginzburg V L Crystal Optics With Spatial Dispersion, And Excitons (Berlin: Springer-Verlag, 1984)
Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spinovye Volny (M.: Nauka, 1967); Per. na angl. yaz., Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spin Waves (Amsterdam: North-Holland Publ. Co., 1968)
Born M, Wolf E Principles Of Optics (Oxford: Pergamon Press, 1969); Per. na russk. yaz., Born M, Vol’f E Osnovy Optiki (M.: Mir, 1970)
Ginzburg V L, Rukhadze A A Volny v Magnitoaktivnoi Plazme 2-e izd. (M.: Nauka, 1975)
Landsberg G S Optika (M.: Nauka, 1976)
Felsen L B, Marcuvitz N Radiation And Scattering Of Waves (Englewood Cliffs, NJ: Prentice-Hall, 1973); Per. na russk. yaz., Felsen L, Markuvits N Izluchenie i Rasseyanie Voln Vol. 2 (M.: Mir, 1978)
Vinogradova M B, Rudenko O V, Sukhorukov A P Teoriya Voln (M.: Nauka, 1990)
Vashkovskii A V, Stal’makhov V S, Sharaevskii Yu P Magnitostaticheskie Volny v Elektronike Sverkhvysokikh Chastot (Saratov: Izd-vo Saratovskogo un-ta, 1993)
Gurevich A G, Melkov G A Magnitnye Kolebaniya i Volny (M.: Nauka, 1994); Per. na angl. yaz., Gurevich A G, Melkov G A Magnetization Oscillations And Waves (Boca Raton, FL: CRC Press, 1996)
Stancil D D, Prabhakar A Spin Waves. Theory And Applications (New York: Springer, 2009)
Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spinovye Volny (M.: Nauka, 1967); Per. na angl. yaz., Akhiezer A I, Bar’yakhtar V G, Peletminskii S V Spin Waves (Amsterdam: North-Holland Publ. Co., 1968)
Stratton J A Electromagnetic Theory(Intern. Ser. in Physics) (New York: McGraw-Hill Book Co., 1941); Per. na russk. yaz., Stretton Dzh A Teoriya Elektromagnetizma (M.-L.: Gostekhizdat, 1948)