Issues

 / 

2024

 / 

November

  

55th anniversary of the Institute of Spectroscopy of the Russian Academy of Sciences (ISAN). Reviews of topical problems


Silicon integrated photonics

 ,  , § , * , # , ° , & ,  
Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation

Technologies of silicon integrated photonics are the basis for the fabrication of a class of devices, such as optical modulators, photodetectors, optical filters and switches, multiplexers and demultiplexers, and optical transceivers. In many respects, silicon integrated photonics competes with alternative platforms based on indium phosphide, silicon nitride and dioxide, and other platforms. Here we provide an overview of modern approaches used in silicon integrated photonic technologies, describe the components of photonic integrated circuits and devices developed on their basis, and make a comparison with alternative technology platforms.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: silicon, integrated photonics, nanophotonics, silicon-on-insulator, photonic integrated circuits
PACS: 42.82.−m, 42.82.Et, 84.40.Lj (all)
DOI: 10.3367/UFNe.2024.09.039762
URL: https://ufn.ru/en/articles/2024/11/j/
Citation: Kosolobov S S, Pshenichnyuk I A, Taziev K R, Zemtsova A K, Zemtsov D S, Smirnov A S, Zhigunov D M, Drachev V P "Silicon integrated photonics" Phys. Usp. 67 (11) (2024)

Received: 15th, April 2024, revised: 12th, September 2024, 13th, September 2024

Îðèãèíàë: Êîñîëîáîâ Ñ Ñ, Ïøåíè÷íþê È À, Òàçèåâ Ê Ð, Çåìöîâà À Ê, Çåìöîâ Ä Ñ, Ñìèðíîâ À Ñ, Æèãóíîâ Ä Ì, Äðà÷åâ Â Ï «Êðåìíèåâàÿ èíòåãðàëüíàÿ ôîòîíèêà» ÓÔÍ 194 1223–1239 (2024); DOI: 10.3367/UFNr.2024.09.039762

References (137) ↓ Similar articles (1)

  1. Horikawa T et al IEEE J. Select. Topics Quantum Electron. 24 8200415 (2018)
  2. Shen Y et al J. Lightwave Technol. 37 245 (2019)
  3. Rumley S et al J. Lightwave Technol. 33 547 (2015)
  4. Zhang X et al Nature 603 253 (2022)
  5. Rogers C et al Nature 590 256 (2021)
  6. Poulton C V et al IEEE J. Select. Topics Quantum Electron. 28 6100508 (2022)
  7. Harris N C et al Nanophotonics 5 456 (2016)
  8. Sun J et al IEEE J. Select. Topics Quantum Electron. 20 264 (2013)
  9. Seok T J et al Optica 6 490 (2019)
  10. Chang Lin et al Opt. Photon. News 33 (1) 24 (2022)
  11. Vlasov Yu A, McNab S J Opt. Express 12 1622 (2004)
  12. Horikawa T, Shimura D, Mogami T MRS Commun. 6 9 (2016)
  13. Pavesi L, Lockwood D J (Eds) Silicon Photonics III. Systems And Applications (Topics in Applied Physics) Vol. 122 (Berlin: Springer, 2016)
  14. Bogaerts W, Chrostowski L Laser Photon. Rev. 12 1700237 (2018)
  15. Landau L D, Lifshits E M Elektrodinamika Sploshnykh Sred (M.: Fizmatlit, 2005); Per. na angl. yaz., Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984)
  16. Novotny L, Hecht B Principles Of Nano-Optics (Cambridge: Cambridge Univ. Press, 2012)
  17. Inan U S, Marshall R A Numerical Electromagnetics (Cambridge: Cambridge Univ. Press, 2011)
  18. Pshenichnyuk I A et al Phys. Rev. B 109 035401 (2024)
  19. Pshenichnyuk I A, Kosolobov S S, Drachev V P Phys. Rev. B 103 115404 (2021)
  20. Pshenichnyuk I A et al Phys. Rev. B 100 195434 (2019)
  21. Pshenichnyuk I A i dr Kvantovaya Elektronika 48 1153 (2018); Pshenichnyuk I A et al Quantum Electron. 48 1153 (2018)
  22. Bogaerts W et al J. Lightwave Technol. 23 401 (2005)
  23. Li C, Liu D, Dai D Nanophotonics 8 227 (2018)
  24. Bogaerts W et al Laser Photon. Rev. 6 47 (2012)
  25. Zemtsov D S et al Opt. Lett. 47 3339 (2022)
  26. Dumon P et al IEEE Photon. Technol. Lett. 16 1328 (2004)
  27. Bojko R et al J. Vac. Sci. Technol. B 29 06F309 (2011)
  28. Chen Y et al J. Micro/Nanolithogr. MEMS MOEMS 8 043060 (2009)
  29. Lee D H et al J. Micromech. Microeng. 25 015003 (2014)
  30. Li B et al Optik 172 777 (2018)
  31. Bellegarde C et al IEEE Photon. Technol. Lett. 30 591 (2018)
  32. Sparacin D K et al J. Lightwave Technol. 23 2455 (2005)
  33. Cardenas J et al Opt. Express 17 4752 (2009)
  34. Gao F et al Appl. Phys. B 81 691 (2005)
  35. Takahashi J et al J. Vac. Sci. Technol. B 22 2522 (2004)
  36. Lee K K et al Opt. Lett. 26 1888 (2001)
  37. Hirayama N et al 2012 Intern. Conf. on Solid State Devices and Materials, September 25-27, 2012, Kyoto, Japan, Extended Abstracts (Tokyo: The Japan Society of Applied Physics, 2012) p. 530
  38. Barwicz T, Haus H A J. Lightwave Technol. 23 2719 (2005)
  39. Qiu C et al J. Lightwave Technol. 32 2303 (2014)
  40. Hong S et al Photon. Res. 10 1 (2022)
  41. Dong P et al Opt. Express 18 14474 (2010)
  42. Su Y et al Adv. Mater. Technol. 5 1901153 (2020)
  43. Tran M A et al Appl. Sci. 8 1139 (2018)
  44. Ławniczuk K et al Adv. Opt. Technol. 4 (2) 157 (2015)
  45. D’Agostino D et al Opt. Express 23 25143 (2015)
  46. Wörhoff K et al Adv. Opt. Technol. 4 (2) 189 (2015)
  47. Blumenthal D J et al Proc. IEEE 106 2209 (2018)
  48. Zhu D et al Adv. Opt. Photon. 13 242 (2021)
  49. Himeno A, Kato K, Miya T IEEE J. Select. Topics Quantum Electron. 4 913 (1998)
  50. Barwicz T et al Proc. SPIE 6872 68720Z (2008)
  51. Boeck R et al Opt. Express 18 25151 (2010)
  52. Smirnov A S i dr Foton-ekspress (6) 139 (2023)
  53. Sun Y, Fan X Anal. Bioanal. Chem. 399 205 (2011)
  54. Carlborg C F et al Lab Chip 10 281 (2010)
  55. Washburn A L, Gunn L C, Bailey R C Anal. Chem. 81 9499 (2009)
  56. Tahersima M H et al Nanophotonics 8 1559 (2019)
  57. Xu Q, Fattal D, Beausoleil R G Opt. Express 16 4309 (2008)
  58. Li A et al Laser Photon. Rev. 10 420 (2016)
  59. Taziev K R, Kosolobov S S, Drachev V P Foton-ekspress (6) 106 (2023)
  60. De Heyn P et al 2011 Optical Fiber Communication Conf. and Exposition and the National Fiber Optic Engineers Conf., OFC/NFOEC 2011, Los Angeles, California, USA, 6-10 March 2011 (Piscataway, NJ: IEEE, 2011) p. 1701
  61. Ehrlichman Y et al 2016 IEEE Intern. Topical Meeting on Microwave Photonics, MWP 2016, Long Beach, California, USA, 31 October - 3 November 2016 (Piscataway, NJ: IEEE, 2016) p. 95
  62. Guillén-Torres M A et al IEEE Photon. Conf. 336 (2014)
  63. Burla M et al 2016 IEEE Intern. Topical Meeting on Microwave Photonics, MWP 2016, Long Beach, California, USA, 31 October - 3 November 2016 (Piscataway, NJ: IEEE, 2016) p. 259
  64. Griffith A et al Opt. Express 20 21341 (2012)
  65. Jiang W C, Zhang J, Lin Q Opt. Express 22 1187 (2014)
  66. Blumenthal D J et al Proc. IEEE 106 2209 (2018)
  67. Bauters J F et al Opt. Express 19 3163 (2011)
  68. Zhang L et al Laser Photon. Rev. 16 2100292 (2022)
  69. Luo H et al Front. Optoelectron. 16 4 (2023)
  70. Treshchikov V N, Listvin V N DWDM-sistemy (M.: Tekhnosfera, 2021)
  71. Shoman H et al Opt. Express 27 26661 (2019)
  72. Chen L, Sherwood-Droz N, Lipson M Opt. Lett. 32 3361 (2007)
  73. Yao J, Wu M C Opt. Lett. 34 2557 (2009)
  74. Li X et al J. Opt. 49 427 (2020)
  75. Dai T et al Opt. Lett. 41 4807 (2016)
  76. Ong J R, Kumar R, Mookherjea S IEEE Photon. Technol. Lett. 25 1543 (2013)
  77. Ren Y et al IEEE Photon. Technol. Lett. 31 1503 (2019)
  78. Cocorullo G et al Appl. Phys. Lett. 74 3338 (1999)
  79. Popovic A Ph.D. Dissertation (Cambridge, MA: MIT, 2008)
  80. Arbabi A, Goddard L L Opt. Lett. 38 3878 (2013)
  81. Boeck R et al Opt. Express 18 25151 (2010)
  82. Bélanger-de Villers S, Hould D, Shi W Optical Fiber Communication Conf. OFC, 2019 (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2019), paper W2A.4
  83. Weng S et al Photonics 8 214 (2021)
  84. Zhang Z, Wang Y, Tsang H K ACS Photon. 8 1251 (2021)
  85. Zemtsov D S i dr Foton-ekspress (6) 110 (2023)
  86. Zemtsov D S i dr Foton-ekspress (6) 173 (2021)
  87. Xie C et al Opt. Laser Technol. 163 109330 (2023)
  88. Han Q, Ménard M, Shi W IEEE Photon. Technol. Lett. 32 1411 (2020)
  89. Shang K et al IEEE Photon. J. 9 (5) 1 (2017)
  90. Hibino Y IEEE J. Select. Topics Quantum Electron. 8 1090 (2002)
  91. Juhari N et al AIP Conf. Proc. 2203 020046 (2020)
  92. Dong P IEEE J. Select. Topics Quantum Electron. 22 6100609 (2016)
  93. Lycett R J et al IEEE Photon. J. 5 2400123 (2013)
  94. Wang Y, Calabretta N Opt. Lett. 47 5268 (2022)
  95. Wang Y et al J. Lightwave Technol. 42 1538 (2024)
  96. Zemtsova A K i dr Foton-ekspress (6) 96 (2023)
  97. Dadashev M S i dr Radiotekhnika Elektronika 68 188 (2023); Dadashev M S et al J. Commun. Technol. Electron. 68 185 (2023)
  98. Ghelfi P et al Nature 507 341 (2014)
  99. Mehta N et al 2020 IEEE Symp. on VLSI Technology, Honolulu, HI, USA, 16-19 June 2020 (Piscataway, NJ: IEEE, 2020) p. 56
  100. Shan W et al Opt. Express 29 3375 (2021)
  101. Esman D J et al J. Lightwave Technol. 33 2256 (2015)
  102. Ozaki J et al J. Lightwave Technol. 41 3290 (2023)
  103. Wang C et al Nature 562 101 (2018)
  104. Ruan Z et al Laser Photon. Rev. 17 2200327 (2023)
  105. Reed G T et al Nature Photon. 4 518 (2010)
  106. Soref R A, Bennett B IEEE J. Quantum Electron. 23 123 (1987)
  107. Ayata M et al Science 358 630 (2017)
  108. Zemtsov D S i dr Komp’yuternaya Optika 47 224 (2023)
  109. Zemtsov D S et al J. Lightwave Technol. 41 6310 (2023)
  110. Amin R et al Optica 7 333 (2020)
  111. Cocorullo G, Rendina I Electron. Lett. 28 83 (1992)
  112. Zhang Y et al Photon. Res. 10 1127 (2022)
  113. Alam M S et al J. Lightwave Technol. 39 4270 (2021)
  114. Burla M et al APL Photon. 4 056106 (2019)
  115. Cox C H (III) Analog Optical Links: Theory And Practice (New York: Cambridge Univ. Press, 2004)
  116. Zhang Q et al Opt. Lett. 5655 (2019)
  117. Chrostowski L, Hochberg M Silicon Photonics Design: From Devices To Systems (Cambridge: Cambridge Univ. Press, 2015)
  118. Zimmermann L et al 5th IEEE Intern. Conf. on Group IV Photonics, 17-19 September 2008, Sorrento, Italy (Piscataway, NJ: IEEE, 2008) p. 371
  119. McNab S J, Moll N, Vlasov Yu A Opt. Express 11 2927 (2003)
  120. Snyder B, O’Brien P Optical Fiber Communication Conf. (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2012), paper OM2E.5
  121. Galan J V et al 6th IEEE Intern. Conf. Group IV Photonics (Piscataway, NJ: IEEE, 2009) p. 148
  122. Margalit N et al Appl. Phys. Lett. 118 220501 (2021)
  123. Liang D, Bowers J E Light Adv. Manuf. 2 (1) 59 (2021)
  124. Heck M J R et al IEEE J. Select. Topics Quantum Electron. 19 6100117 (2013)
  125. Porter C et al APL Photon. 8 080902 (2023)
  126. Marinins A et al IEEE J. Select. Topics Quantum Electron. 29 8200311 (2023)
  127. Mack M et al US Patent 8168939 (2012)
  128. Snyder B, Corbett B, O’Brien P J. Lightwave Technol. 31 3934 (2013)
  129. Dehlinger G et al IEEE Photon. Technol. Lett. 16 2547 (2004)
  130. Ahn D et al Opt. Express 15 3916 (2007)
  131. Vivien L et al Opt. Express 15 9843 (2007)
  132. Wang J, Lee S Sensors 11 696 (2011)
  133. Yuan Y et al J. Semiconductors 43 021301 (2022)
  134. Li X et al Photon. Res. 9 494 (2021)
  135. Chowdhury A et al 2022 Optical Fiber Communications Conf. and Exhibition, OFC (Technical Digest Series) (Washington, DC: Optica Publ. Group, 2022), paper W3D.1
  136. Kang Y et al Nature Photon. 3 59 (2009)
  137. Benedikovic D et al IEEE J. Select. Topics Quantum Electron. 28 3802508 (2022)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions