Issues

 / 

2024

 / 

November

  

55th anniversary of the Institute of Spectroscopy of the Russian Academy of Sciences (ISAN). Reviews of topical problems


Superconducting terahertz receivers

  a,   a, §  a, *  a, #  a, °  a, b, &  a, b,   c,   a, b,   a
a Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation
b Astro Space Centre, Lebedev Physical Institute, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russian Federation
c Kapteyn Astronomical Institute, University of Groningen, PO Box 72, Groningen, 9700, the Netherlands

In some practical applications, devices based on superconducting electronics, due to their unique set of parameters, are far superior to those based on conventional technologies, being in some cases the only viable option. One of the most advanced areas is the development of ultra-sensitive terahertz-range receivers: their operating frequency has reached 1 THz, and the noise temperature is only limited by quantum or photon noise.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: radio astronomy, niobium-based high-quality tunnel junctions, low-noise SIS receivers, THz-range quantum-limited mixers
PACS: 07.57.−c, 85.25.−j, 95.55.−n (all)
DOI: 10.3367/UFNe.2024.07.039726
URL: https://ufn.ru/en/articles/2024/11/i/
Citation: Filippenko L V, Chekushkin A M, Fominskii M Yu, Ermakov A B, Kinev N V, Rudakov K I, Khudchenko A V, Baryshev A M, Koshelets V P, Nikitov S A "Superconducting terahertz receivers" Phys. Usp. 67 (11) (2024)

Received: 9th, March 2024, revised: 17th, May 2024, 29th, July 2024

Оригинал: Филиппенко Л В, Чекушкин А М, Фоминский М Ю, Ермаков А Б, Кинев Н В, Рудаков К И, Худченко А В, Барышев А М, Кошелец В П, Никитов С А «Сверхпроводниковые приёмные устройства терагерцового диапазона» УФН 194 1207–1222 (2024); DOI: 10.3367/UFNr.2024.07.039726

References (114) ↓ Similar articles (1)

  1. Tinkham M Introduction To Superconductivity (New York: McGraw-Hill, 1975); Per. na russk. yaz., Tinkkham M Vvedenie v Sverkhprovodimost’ (Per. s angl. pod red. K K Likhareva) (M.: Atomizdat, 1980)
  2. Barone A, Paternò G (Eds) Physics And Applications Of The Josephson Effect (New York: Wiley, 1982); Per. na russk. yaz., Barone A, Paterno Dzh Effekt: Dzhozefsona: Fizika i Primeneniya (M.: Nauka, 1984)
  3. Likharev K K Dynamics Of Josephson Junctions And Circuits 3rd ed. (New York: Gordon Breach Sci. Publ., 1996)
  4. Clarke J, Braginski A I (Eds) The SQUID Handbook Vol. 2 Applications Of SQUIDs And SQUID Systems (Hoboken: Wiley, 2006)
  5. Weinstock H (Ed.) SQUID Sensors: Fundamentals, Fabrication, And Applications (NATO ASI Series. Ser. E) Vol. 329 (Dordrecht: Kluwer Acad. Publ., 1996)
  6. Faley M I et al Sensors 17 2798 (2017)
  7. Huber M et al Nucl. Instrum. Meth. Phys. Res. A 520 234 (2004)
  8. Kozin M G Izv. RAN. Ser. Fizicheskaya 69 (1) 36 (2005)
  9. Semenov A D, Gol’tsman G N, Korneev A A Physica C 351 349 (2001)
  10. Gol’tsman G N et al Appl. Phys. Lett. 79 705 (2001)
  11. Pernice W H P et al Nat. Commun. 3 1325 (2012)
  12. Macklin C et al Science 350 307 (2015)
  13. White T C et al Appl. Phys. Lett. 106 242601 (2015)
  14. Aumentado J IEEE Microw. Mag. 21 (8) 45 (2020)
  15. Likharev K K, Mukhanov O A, Semenov V K "Resistive single flux quantum logic for the Josephson-junction digital technology" SQUID’85. Superconducting Quantum Interference Devices and their Applications. Proc. of the Third Intern. Conf. on Superconducting Quantum Devices, Berlin, West, June 25-28, 1985 (Eds D Hahlbohm, H Lübbig) (Berlin: Walter de Gruyter, 1985) p. 1103
  16. Likharev K K, Semenov V K IEEE Trans. Appl. Supercond. 1 (1) 3 (1991)
  17. Koshelets V et al IEEE Trans. Magn. 23 755 (1987)
  18. Filippenko L V et al IEEE Trans. Magn. 27 2464 (1991)
  19. Rey-de-Castro R C et al IEEE Trans. Appl. Supercond. 11 1014 (2001)
  20. Klenov N V i dr FNT 43 991 (2017); Klenov N V et al Low Temp. Phys. 43 789 (2017)
  21. Tucker J R, Feldman M J Rev. Mod. Phys. 57 1055 (1985)
  22. Zmuidzinas J, Richards P L Proc. IEEE 92 1597 (2004)
  23. ALMA Observatory, https://www.almaobservatory.org/en/about-alma/
  24. Herschel Space Observatory, https://www.herschel.caltech.edu/
  25. Wolf E L et al (Eds) Josephson Junctions. History, Devices, And Applications (New York: Jenny Stanford Publ., 2017)
  26. Tucker J IEEE J. Quantum Electron. 15 1234 (1979)
  27. Richards P L et al Appl. Phys. Lett. 34 345 (1979)
  28. Kerr A R, Feldman M J, Pan S-K "Receive noise temperature, the quantum noise limit, and the role of the zero-point fluctuations" Proc. of the Eighth Intern. Symp. on Space Terahertz Technology, Cambridge, MA, USA, 25-27 March 1997 (Eds R Blundell, E Tong) (Cambridge, MA: Harvard Univ., 1997) p. 101
  29. De Graauw Th et al Astron. Astrophys. 518 L6 (2010)
  30. IRE im. V.A. Kotel’nikova RAN. Unikal’naya nauchnaya ustanovka "Kriointegral" — "Tekhnologicheskii i izmeritel’nyi kompleks dlya sozdaniya sverkhprovodnikovykh nanosistem na osnove novykh materialov", https://nanolith.ru/unu.html; http://ckp-rf.ru/usu/352529/
  31. Filippenko L V et al IEEE Trans. Appl. Supercond. 11 816 (2001)
  32. Dmitriev P N et al IEEE Trans. Appl. Supercond. 13 107 (2003)
  33. Rudakov K I et al Appl. Sci. 11 10087 (2021)
  34. Monaco R et al Phys. Rev. Lett. 96 180604 (2006)
  35. Kostyurina E A i dr Radiotekhnika Elektronika 62 1142 (2017); Kostyurina E A et al J. Commun. Technol. Electron. 62 1306 (2017)
  36. Butz S et al Opt. Express 21 22540 (2013)
  37. Jung P et al Nat. Commun. 5 3730 (2014)
  38. Rowell J M, Gurvitch M, Geerk J Phys. Rev. B 24 2278 (1981)
  39. Gurvitch M, Washington M A, Huggins H A Appl. Phys. Lett. 42 472 (1983)
  40. Golubov A A et al Phys. Rev. B 51 1073 (1995)
  41. Dmitriev P N et al IEEE Trans. Appl. Supercond. 9 3970 (1999)
  42. Imamura T, Shiota T, Hasuo S IEEE Trans. Appl. Supercond. 2 1 (1992)
  43. Imamura T, Hasuo S IEEE Trans. Appl. Supercond. 2 84 (1992)
  44. Kleinsasser A W, Mallison W H, Miller R E IEEE Trans. Appl. Supercond. 5 2318 (1995)
  45. Kawamura J et al Appl. Phys. Lett. 76 2119 (2000)
  46. Torgashin M Yu et al IEEE Trans. Appl. Supercond. 17 379 (2007)
  47. Dmitriev P N, Filippenko L V, Koshelets V P "Applications in superconducting SIS mixers and oscillators: Toward integrated receivers" Josephson Junctions. History, Devices, And Applications (Eds E L Wolf et al) (New York: Jenny Stanford Publ., 2017) p. 185-244, Ch. 7
  48. Rai-Choudhury P (Ed.) Handbook Of Microlithography, Micromachining, And Microfabrication Vol. 1 Microlithography (Bellingham, WA: SPIE, 1997)
  49. Nanoengineering EBL Tool: eLINE Plus|RAITH Group (2021), https://www.raith.com/product/eline-plus/
  50. Greve M M, Holst B J. Vac. Sci. Technol. B 31 043202 (2013)
  51. Fominsky M Yu et al Electronics 10 2944 (2021)
  52. Jackson B D et al J. Appl. Phys. 97 113904 (2005)
  53. Karpov A et al IEEE Trans. Appl. Supercond. 17 343 (2007)
  54. Uzawa Y et al IEEE Trans. Appl. Supercond. 25 2401005 (2015)
  55. Khudchenko A et al IEEE Trans. Terahertz Sci. Technol. 6 127 (2016)
  56. Event Horizon Telescope. Press Release (April 10, 2019): Astronomers Capture First Image of a Black Hole, https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
  57. Akiyama K et al Astron. Astrophys. 681 A79 (2024)
  58. The Event Horizon Telescope, https:///eventhorizontelescope.org/
  59. LLAMA — Large Latin American Millimeter/submillimeter Array, https://www.llamaobservatory.org/
  60. Radboud University. Africa Millimetre Telescope — AMT, https://www.ru.nl/en/research/research-projects/africa-millimetre-telescope
  61. Millimetron. Millimetron Space Observatory. accessed on March 01, 2024, https://millimetron.ru/index.php/en/
  62. Novikov I D i dr Usp. Fiz. Nauk 191 404 (2021); Novikov I D et al Phys. Usp. 64 386 (2021)
  63. Baryshev A M et al Astron. Astrophys. 577 A129 (2015)
  64. Rudakov K "Development of advanced superconductor—insulator—superconductor mixers for terahertz radio astronomy" Ph.D. Thesis (Groningen, The Netherlands: Univ. of Groningen, 2021)
  65. Zmuidzinas J et al IEEE Trans. Microw. Theory Tech. 42 698 (1994)
  66. Belitsky V Yu, Jacobsson S W, Filippenko L V, Kollberg E L Microw. Opt. Technol. Lett. 10 74 (1995)
  67. Rudakov K I i dr Izv. Vuzov. Radiofizika 62 613 (2019); Rudakov K I et al Radiophys. Quantum Electron. 62 547 (2019)
  68. Rudakov K I i dr Izv. Vuzov. Radiofizika 59 793 (2017); Rudakov K I et al Radiophys. Quantum Electron. 59 711 (2017)
  69. Khudchenko A et al Proc. of the 28th Intern. Symp. on Space Terahertz Technology ISSTT-2017, Cologne, Germany, 13-15 March, 2017 p. 87-90
  70. Otárola A et al "Atmospheric transparency at Chajnantor: 1973-2003" ALMA Memos, ALMA Memo #512 (2005), accessed on 19 September 2021; https://library.nrao.edu/alma.shtml
  71. Koshelets V P et al IEEE Trans. Appl. Supercond. 13 1035 (2003)
  72. Koshelets V P et al "Integrated submm wave receiver: development and applications" Fundamentals Of Superconducting Nanoelectronics (NanoScience and Technology, Ed. A Sidorenko) (Berlin: Springer, 2011) p. 263-296
  73. Koshelets V P et al "Flux flow oscillators for sub-mm wave integrated receivers" was presented at Applied Superconductivity Conf., ASC-98, Palm Desert Springs, CA, USA, 13-18 September 1998; Koshelets V P et al IEEE Trans. Appl. Supercond. 9 4133 (1999)
  74. Koshelets V P et al Rev. Sci. Instrum. 71 289 (2000)
  75. Khudchenko A V et al IEEE Trans. Appl. Supercond. 17 605 (2007)
  76. Kalashnikov K V, Khudchenko A V, Koshelets V P Appl. Phys. Lett. 103 102601 (2013)
  77. Koshelets V P, Shitov S V Supercond. Sci. Technol. 13 R53 (2000)
  78. de Lange G et al Supercond. Sci. Technol. 23 045016 (2010)
  79. Kiselev O et al IEEE Trans. Appl. Supercond. 21 612 (2011)
  80. Li M et al Phys. Rev. B 86 060505 (2012)
  81. Sun H et al Phys. Rev. Appl. 8 054005 (2017)
  82. Baksheeva K A et al IEEE Trans. Terahertz Sci. Technol. 11 381 (2021)
  83. Varmazis C et al Appl. Phys. Lett. 33 357 (1978)
  84. Joergensen E et al Phys. Rev. Lett. 49 1093 (1982)
  85. Cirillo M, Lloyd F L J. Appl. Phys. 61 2581 (1987)
  86. Nagatsuma T et al J. Appl. Phys. 54 3302 (1983)
  87. Nagatsuma T et al J. Appl. Phys. 56 3284 (1984)
  88. Nagatsuma T et al J. Appl. Phys. 58 441 (1985)
  89. Qin J, Enpuku K, Yoshida K J. Appl. Phys. 63 1130 (1988)
  90. Ustinov A V, Kohlstedt H, Henne P Phys. Rev. Lett. 77 3617 (1996)
  91. Werthamer N R Phys. Rev. 147 255 (1966)
  92. Hasselberg L-E, Levinsen M T, Samuelsen M R Phys. Rev. B 9 3757 (1974)
  93. Koshelets V P et al Phys. Rev. B 56 5572 (1997)
  94. Gulevich D R, Koshelets V P, Kusmartsev F V Phys. Rev. B 96 024515 (2017)
  95. Gulevich D R, Filippenko L V, Koshelets V P J. Low Temp. Phys. 194 312 (2019)
  96. Gulevich D R, Koshelets V P, Kusmartsev F V Phys. Rev. B 99 060501 (2019)
  97. Kinev N V, Rudakov K I, Baryshev A M, Koshelets V P Fiz. Tverd. Tela 60 2132 (2018); Kinev N V, Rudakov K I, Baryshev A M, Koshelets V P Phys. Solid State 60 2173 (2018)
  98. Kinev N V et al J. Appl. Phys. 125 151603 (2019)
  99. Kinev N V i dr Radiotekhnika Elektronika 64 970 (2019); Kinev N V et al J. Commun. Technol. Electron. 64 1081 (2019)
  100. Kinev N V i dr Fiz. Tverd. Tela 62 1379 (2020); Kinev N V et al Phys. Solid State 62 1543 (2020)
  101. Kinev N V et al IEEE Trans. Terahertz Sci. Technol. 9 557 (2019)
  102. Kinev N V et al Sensors 20 7276 (2020)
  103. Koshelets V P et al Appl. Phys. Lett. 68 1273 (1996)
  104. Koshelets V P et al IEEE Trans. Appl. Supercond. 15 960 (2005)
  105. Koshelets V P i dr Izv. Vuzov. Radiofizika 48 947 (2005); Koshelets V P et al Radiophys. Quantum Electron. 48 844 (2005)
  106. Koshelets V P i dr Izv. Vuzov. Radiofizika 50 935 (2007); Koshelets V P et al Radiophys. Quantum Electron. 50 847 (2007)
  107. Koshelets V P et al Proc. SPIE 7854 78540J (2010)
  108. Dmitriev P N i dr Uspekhi Sovremennoi Radioelektroniki (5) 75 (2010); https://www.elibrary.ru/ltixzt
  109. Koshelets V P et al Supercond. Sci. Technol. 14 1040 (2001)
  110. Koshelets V P et al IEEE Trans. Appl. Supercond. 15 964 (2005)
  111. de Lange A et al Atmos. Meas. Tech. 5 487 (2012)
  112. Koshelets V P et al IEEE Trans. Terahertz Sci. Technol. 5 687 (2015)
  113. Ermakov A B et al IEEE Trans. Appl. Supercond. 11 840 (2001)
  114. Kinev N V i dr Izv. Vuzov. Radiofizika 56 647 (2013); Kinev N V et al Radiophys. Quantum Electron. 56 582 (2014)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions