Issues

 / 

2024

 / 

November

  

55th anniversary of the Institute of Spectroscopy of the Russian Academy of Sciences (ISAN). Reviews of topical problems


Experiments with nonlinear topological edge states in static and dynamically modulated Su—Schrieffer—Heeger arrays

  a,  a,  b,  c,  c,  c,  c,  c,  a,  a,  a, d
a Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
b Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University , Xi'an, China
c Quantum Technology Center of Lomonosov Moscow State University, Leninskie Gory 1, build. 35, Moscow, 119991, Russian Federation
d HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

Progress in the observation of solitons in photonic topological insulators is discussed. Results are presented of experiments with nonlinear topological states in Su—Schrieffer—Heeger arrays — fabricated using the femtosecond writing technique — that are static, i.e., invariable in the direction of light propagation, and dynamically modulated (primarily periodically) in the direction of light propagation. Such objects are one of the simplest models of a topologically nontrivial structure. Solitons in topological insulators bifurcate with increasing laser beam power from linear edge states in the topological bandgap, inheriting their topological protection. The spatial localization of the soliton and the position of its propagation constant in the topological bandgap depend in a nonlinear medium on peak power and can be effectively controlled. Experimental observation of the switching of the edge topological modes in the bandgap between two closely spaced dimerized Su—Schrieffer—Heeger arrays is presented. The switching, whose rate depends on radiation intensity, can be completely arrested in a strongly nonlinear regime. In trimer waveguide arrays, whose spectrum in the topological phase features two simultaneously emerging topological bandgaps with edge states of different symmetries, two coexisting types of topological solitons exhibiting different degrees of stability were observed. We also discuss experimental observations of π-solitons — nonlinear topological Floquet states periodically reproducing their profiles in 1D- and 2D-dimensional Su—Schrieffer—Heeger arrays modulated in the direction of propagation of radiation.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Keywords: Su—Schrieffer—Heeger arrays, topological solitons, switching, topological photonics
PACS: 05.45.Yv, 42.65.Re, 42.65.Tg (all)
DOI: 10.3367/UFNe.2024.08.039740
URL: https://ufn.ru/en/articles/2024/11/e/
Citation: Kartashov Ya V, Ivanov S K, Zhang Y Q, Zhuravitskii S A, Skryabin N N, Dyakonov I V, Kalinkin A A, Kulik S P, Kompanets V O, Chekalin S V, Zadkov V N "Experiments with nonlinear topological edge states in static and dynamically modulated Su—Schrieffer—Heeger arrays" Phys. Usp. 67 (11) (2024)

Received: 7th, March 2024, revised: 28th, June 2024, 28th, August 2024

Оригинал: Карташов Я В, Иванов С К, Жанг Й Ч, Журавицкий С А, Скрябин Н Н, Дьяконов И В, Калинкин А А, Кулик С П, Компанец В О, Чекалин С В, Задков В Н «Эксперименты с нелинейными топологическими состояниями в статических и динамически модулированных массивах Су—Шриффера—Хигера» УФН 194 1159–1176 (2024); DOI: 10.3367/UFNr.2024.08.039740

References (138) ↓ Similar articles (1)

  1. Volkov B A, Pankratov O A Pis’ma ZhETF 42 145 (1985); Volkov B A, Pankratov O A JETP Lett. 42 178 (1985)
  2. Pankratov O A Usp. Fiz. Nauk 188 1226 (2018); Pankratov O A Phys. Usp. 61 1116 (2018)
  3. Vedeneev S I Usp. Fiz. Nauk 187 411 (2017); Vedeneev S I Phys. Usp. 60 385 (2017)
  4. Tarasenko S A Usp. Fiz. Nauk 188 1129 (2018); Tarasenko S A Phys. Usp. 61 1026 (2018)
  5. Hasan M Z, Kane C L Rev. Mod. Phys. 82 3045 (2010)
  6. Qi X-L, Zhang S-C Rev. Mod. Phys. 83 1057 (2011)
  7. Süsstrunk R, Huber S D Science 349 47 (2015)
  8. Huber S D Nature Phys. 12 621 (2016)
  9. Peng Y-G et al Nat. Commun. 7 13368 (2016)
  10. He C et al Nature Phys. 12 1124 (2016)
  11. Lu J et al Nature Phys. 13 369 (2017)
  12. Jotzu G et al Nature 515 237 (2014)
  13. Goldman N et al Proc. Natl. Acad. Sci. USA 110 6736 (2013)
  14. Leder M et al Nat. Commun. 7 13112 (2016)
  15. Zhang W et al Phys. Rev. Lett. 123 254103 (2019)
  16. Zhai H et al New J. Phys. 18 080201 (2016)
  17. Nalitov A V, Solnyshkov D D, Malpuech G Phys. Rev. Lett. 114 116401 (2015)
  18. Bardyn C-E et al Phys. Rev. B 91 161413 (2015)
  19. Karzig T et al Phys. Rev. X 5 031001 (2015)
  20. Kartashov Ya V, Skryabin D V Optica 3 1228 (2016)
  21. Bleu O, Solnyshkov D D, Malpuech G Phys. Rev. B 93 085438 (2016)
  22. St-Jean P et al Nat. Photon. 11 651 (2017)
  23. Klembt S et al Nature 562 552 (2018)
  24. Su R et al Sci. Adv. 7 eabf8049 (2021)
  25. Wang Z et al Nature 461 772 (2009)
  26. Hafezi M et al Nature Phys. 7 907 (2011)
  27. Khanikaev A B et al Nature Mater. 12 233 (2013)
  28. Rechtsman M C et al Nature 496 196 (2013)
  29. Maczewsky L J et al Nat. Commun. 8 13756 (2017)
  30. Mukherjee S et al Nat. Commun. 8 13918 (2017)
  31. Klimov V V et al Phys. Rev. B 98 075433 (2018)
  32. Lu L, Joannopoulos J D, Soljačić M Nat. Photon. 8 821 (2014)
  33. Ozawa T et al Rev. Mod. Phys. 91 015006 (2019)
  34. Kim M, Jacob Z, Rho J Light Sci. Appl. 9 130 (2020)
  35. Xie B et al Nat. Rev. Phys. 3 520 (2021)
  36. Lindner N H, Refael G, Galitski V Nature Phys. 7 490 (2011)
  37. Rudner M S et al Phys. Rev. X 3 031005 (2013)
  38. Rudner M S, Lindner N H Nat. Rev. Phys. 2 229 (2020)
  39. Noh J et al Phys. Rev. Lett. 120 063902 (2018)
  40. Dong J-W et al Nature Mater. 16 298 (2017)
  41. Wu X et al Nat. Commun. 8 1304 (2017)
  42. Gao F et al Nature Phys. 14 140 (2018)
  43. He X-T et al Nat. Commun. 10 872 (2019)
  44. Peterson C W et al Nature 555 346 (2018)
  45. Noh J et al Nat. Photon. 12 408 (2018)
  46. Mittal S et al Nat. Photon. 13 692 (2019)
  47. El Hassan A et al Nat. Photon. 13 697 (2019)
  48. Smirnova D et al Appl. Phys. Rev. 7 021306 (2020)
  49. Rachel S Rep. Prog. Phys. 81 116501 (2018)
  50. Szameit A, Rechtsman M C Nature Phys. 20 905 (2024)
  51. Dobrykh D A et al Phys. Rev. Lett. 121 163901 (2018)
  52. Lan Z, You J W, Panoiu N C Phys. Rev. B 101 155422 (2020)
  53. Ivanov S K et al Laser Photon. Rev. 16 2100398 (2022)
  54. Kruk S S et al Nano Lett. 21 4592 (2021)
  55. Hadad Y et al Nat. Electron. 1 178 (2018)
  56. Hadad Y, Khanikaev A B, Alù A Phys. Rev. B 93 155112 (2016)
  57. Maczewsky L J et al Science 370 701 (2020)
  58. Zangeneh-Nejad F, Fleury R Phys. Rev. Lett. 123 053902 (2019)
  59. Banerjee R, Mandal S, Liew T C H Phys. Rev. Lett. 124 063901 (2020)
  60. Leykam D, Chong Y D Phys. Rev. Lett. 117 143901 (2016)
  61. Lumer Y et al Phys. Rev. A 94 021801 (2016)
  62. Lumer Y et al Phys. Rev. Lett. 111 243905 (2013)
  63. Mukherjee S, Rechtsman M C Science 368 856 (2020)
  64. Ablowitz M J, Curtis C W, Ma Y-P Phys. Rev. A 90 023813 (2014)
  65. Ablowitz M J, Cole J T Phys. Rev. A 96 043868 (2017)
  66. Ablowitz M J, Cole J T Phys. Rev. A 99 033821 (2019)
  67. Zhang Z et al Nat. Commun. 11 1902 (2020)
  68. Ivanov S K et al ACS Photon. 7 735 (2020)
  69. Ivanov S K et al Opt. Lett. 45 1459 (2020)
  70. Ivanov S K et al Phys. Rev. A 103 053507 (2021)
  71. Mukherjee S, Rechtsman M C Phys. Rev. X 11 041057 (2021)
  72. Mukherjee S, Rechtsman M C Optica 10 1310 (2023)
  73. Zhong H et al Adv. Photon. 3 (5) 056001 (2021)
  74. Smirnova D A et al Phys. Rev. Research 3 043027 (2021)
  75. Ren B et al Nanophotonics 10 3559 (2021)
  76. Kirsch M S et al Nature Phys. 17 995 (2021)
  77. Hu Z et al Light Sci. Appl. 10 164 (2021)
  78. Ren B et al Light Sci. Appl. 12 194 (2023)
  79. López Carreńo J C, Bermúdez Feijoo S, Stobińska M Npj Nanophoton. 1 3 (2024)
  80. Volovik G E Pis’ma ZhETF 53 208 (1991); Volovik G E JETP Lett. 53 222 (1991)
  81. Gurarie V Phys. Rev. B 83 085426 (2011)
  82. Manmana S R et al Phys. Rev. B 86 205119 (2012)
  83. Su W P, Schrieffer J R, Heeger A J Phys. Rev. Lett. 42 1698 (1979)
  84. Solnyshkov D D et al Phys. Rev. Lett. 118 023901 (2017)
  85. Gorlach M A, Slobozhanyuk A P Nanosystems Phys. Chem. Math. 8 695 (2017)
  86. Chaunsali R et al Phys. Rev. B 103 024106 (2021)
  87. Zykin A Y, Skryabin D V, Kartashov Y V Opt. Lett. 46 2123 (2021)
  88. Bongiovanni D et al Phys. Rev. Lett. 127 184101 (2021)
  89. Hang C et al Phys. Rev. A 103 L040202 (2021)
  90. Malkova N et al Opt. Lett. 34 1633 (2009)
  91. Xia S et al Light Sci. Appl. 9 147 (2020)
  92. Guo M et al Opt. Lett. 45 6466 (2020)
  93. Bisianov A et al Phys. Rev. A 100 063830 (2019)
  94. Pieczarka M et al Optica 8 1084 (2021)
  95. Pernet N et al Nature Phys. 18 678 (2022)
  96. Jin L Phys. Rev. A 96 032103 (2017)
  97. Midya B, Feng L Phys. Rev. A 98 043838 (2018)
  98. Martinez Alvarez V M, Coutinho-Filho M D Phys. Rev. A 99 013833 (2019)
  99. Wang Y et al Phys. Rev. B 103 014110 (2021)
  100. Zhang Y et al Opt. Express 29 42827 (2021)
  101. Kartashov Y V et al Phys. Rev. Lett. 128 093901 (2022)
  102. Kartashov Y V, Konotop V V Chaos Solitons Fractals 179 114461 (2024)
  103. Ma J, Xi X, Sun X Laser Photon. Rev. 13 1900087 (2019)
  104. Merlo J M et al J. Opt. 23 065001 (2021)
  105. Chen Q et al ACS Photon. 8 1400 (2021)
  106. Kraus Y E et al Phys. Rev. Lett. 109 106402 (2012)
  107. Zilberberg O et al Nature 553 59 (2018)
  108. Krueckl V, Richter K Phys. Rev. Lett. 85 115433 (2012)
  109. Li C et al Phys. Rev. A 99 053814 (2019)
  110. Zhang Y et al Laser Photon. Rev. 12 1700348 (2018)
  111. Zhong H et al Opt. Lett. 44 3342 (2019)
  112. Ma X et al Opt. Lett. 45 5311 (2020)
  113. Kartashov Y V, Skryabin D V Phys. Rev. Lett. 119 253904 (2017)
  114. Bazhan N, Malomed B, Yakimenko A Opt. Lett. 46 6067 (2021)
  115. Efremidis N K Phys. Rev. A 104 053531 (2021)
  116. Song W et al Laser Photon. Rev. 14 1900193 (2020)
  117. Arkhipova A A et al Nanophotonics 11 3653 (2022)
  118. Garanovich I L et al Phys. Rep. 518 1 (2012)
  119. Kitagawa T et al Phys. Rev. B 82 235114 (2010)
  120. Rudner M S et al arXiv:1212.3324
  121. Rudner M S, Lindner N H Nat. Rev. Phys. 2 229 (2020)
  122. Asbóth J K, Tarasinski B, Delplace P Phys. Rev. B 90 125143 (2014)
  123. Dal Lago V, Atala M, Foa Torres L E F Phys. Rev. A 92 023624 (2015)
  124. Fruchart M Phys. Rev. B 93 115429 (2016)
  125. Zhang Y et al ACS Photon. 4 2250 (2017)
  126. Petráček J, Kuzmiak V Phys. Rev. A 101 033805 (2020)
  127. Mandal S, Kar S Phys. Rev. B 109 195124 (2024)
  128. Cheng Q et al Phys. Rev. Lett. 122 173901 (2019)
  129. Wu S et al Phys. Rev. Research 3 023211 (2021)
  130. Song W et al Laser Photon. Rev. 15 2000584 (2021)
  131. Sidorenko A et al Phys. Rev. Research 4 033184 (2022)
  132. Cheng Z et al Phys. Rev. Lett. 129 254301 (2022)
  133. Zhu W et al Nat. Commun. 13 11 (2022)
  134. Zhong H et al Phys. Rev. A 107 L021502 (2023)
  135. Ivanov S K, Kartashov Y V Chaos Solitons Fractals 174 113866 (2023)
  136. Arkhipova A A et al Sci. Bull. 68 2017 (2023)
  137. Jensen S IEEE J. Quantum Electron. 18 1580 (1982)
  138. Nguyen V H et al Opt. Lett. 45 5221 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions