Issues

 / 

2024

 / 

January

  

Conferences and symposia


Post-compression of a second harmonic pulse: a way to increase the peak power and temporal contrast of ultrahigh-power laser pulses

 ,  
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

We discuss the use of second harmonic generation (SHG) and subsequent temporal compression to increase the peak power and improve the temporal contrast ratio of pulses at the output of petawatt and multi-petawatt laser systems. Two ways to apply SHG are considered: directly to ultra-short pulses with central wavelengths of 910 nm and 800 nm, as well as to (sub)-picosecond pulses of neodymium lasers with energies up to 1 kJ. The second way is a new approach to producing sources of ultrahigh-power laser pulses of ultra-short duration in the visible wavelength range and may be used in all modern projects aimed at generating extreme light.

Fulltext pdf (605 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.05.039535
Keywords: second harmonic generation, time contrast, time post-compression
PACS: 42.60.-y, 42.65.Ky, 42.65.Re (all)
DOI: 10.3367/UFNe.2023.05.039535
URL: https://ufn.ru/en/articles/2024/1/j/
001198734600009
2-s2.0-85186111810
2024PhyU...67...99M
Citation: Mironov S Yu, Khazanov E A "Post-compression of a second harmonic pulse: a way to increase the peak power and temporal contrast of ultrahigh-power laser pulses" Phys. Usp. 67 99–103 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, August 2023, 22nd, May 2023

Оригинал: Миронов С Ю, Хазанов Е А «Посткомпрессия импульса второй гармоники — путь увеличения пиковой мощности и временного контраста сверхмощных лазерных импульсов» УФН 194 106–111 (2024); DOI: 10.3367/UFNr.2023.05.039535

References (34) ↓ Cited by (3) Similar articles (20)

  1. Danson C N et al High Power Laser Sci. Eng. 7 e54 (2019)
  2. Korzhimanov A V et al Phys. Usp. 54 9 (2011); Korzhimanov A V et al Usp. Fiz. Nauk 181 9 (2011)
  3. Li Z, Leng Y, Li R Laser Photon. Rev. 17 2100705 (2023)
  4. Kawanaka J et al Rev. Laser Eng. 42 179 (2014)
  5. Bromage J et al High Power Laser Sci. Eng. 9 e63 (2021)
  6. Peng Y et al Reza Kenkyu 49 (2) 93 (2021)
  7. Li Z, Kawanaka J Rev. Laser Eng. 49 101 (2021)
  8. Li Z, Kato Y, Kawanaka J Sci. Rep. 11 151 (2021)
  9. Kostyukov I Y, Khazanov E A, Shaikin A A, Litvak A G, Sergeev A M Bull. Lebedev Phys. Inst. 50 (Suppl. 6) S635 (2023); Khazanov E A et al Kvantovaya Elektron. 53 95 (2023)
  10. Blanchot N et al Plasma Phys. Control. Fusion 50 124045 (2008)
  11. Batani D et al Phys. Scripta 2014 014016 (2014)
  12. Khazanov E A Quantum Electron. 52 208 (2022); Khazanov E A Kvantovaya Elektron. 52 208 (2022)
  13. Khazanov E A, Mironov S Yu, Mourou G Phys. Usp. 62 1096 (2019); Khazanov E A, Mironov S Yu, Mourou G Usp. Fiz. Nauk 189 1173 (2019)
  14. Ginzburg V et al Opt. Express 29 28297 (2021)
  15. Shaykin A et al High Power Laser Sci. Eng. 9 e54 (2021)
  16. Mourou G et al Eur. Phys. J. Spec. Top. 223 1181 (2014)
  17. Mironov S Yu et al Laser Phys. Lett. 12 025301 (2015)
  18. Mironov S Yu et al Quantum Electron. 47 173 (2017); Mironov S Yu et al Kvantovaya Elektron. 47 173 (2017)
  19. Ginzburg V et al Proc. of the 2020 High Intensity Lasers and High Field Phenomena, HILAS &mdsah; Part of OSA High-Brightness Sources and Light-Driven Interactions Congress 2020
  20. Ginzburg V et al Phys. Rev. A 101 013829 (2020)
  21. Fourmaux S et al Opt. Lett. 47 3163 (2022)
  22. Kim J I et al Opt. Express 30 8734 (2022)
  23. Bleotu P-G et al High Power Laser Sci. Eng. 11 e30 (2023)
  24. Mironov S et al Appl. Opt. 48 2051 (2009)
  25. Mironov S Yu et al IEEE J. Select. Top. Quantum Electron. 18 7 (2012)
  26. Mironov S Yu et al Quantum Electron. 41 963 (2011); Mironov S Yu et al Kvantovaya Elektron. 41 963 (2011)
  27. Bespalov V I, Talanov V I JETP Lett. 3 307 (1966); Bespalov V I, Talanov V I Pis’ma Zh. Eksp. Teor. Fiz. 3 471 (1966)
  28. Ginzburg V N et al Quantum Electron. 40 503 (2010); Ginzburg V N et al Kvantovaya Elektron. 40 503 (2011)
  29. Shorokhov O, Pukhov A, Kostyukov I Phys. Rev. Lett. 91 265002 (2003)
  30. Mironov S et al Appl. Phys. B 113 147 (2013)
  31. Gaul E W et al Appl. Opt. 49 1676 (2010)
  32. Gaul E et al J. Phys. Conf. Ser. 717 012092 (2016)
  33. Martinez M et al Proc. SPIE 5991 59911N (2006)
  34. Hawkes S et al Central Laser Facility Annual Report 2003/2004 (Chilton: Central Laser Facility CCLRC Rutherford Appleton Laboratory, 2004) p. 169; https://www.clf.stfc.ac.uk/Pages/ar03-04.pdf

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions