Issues

 / 

2023

 / 

September

  

Methodological notes


Isolation of the field component formed by a given beam of rays at the aperture of a receiving antenna in an inhomogeneous environment

 
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

A generalization of the classical procedure for forming a receiving antenna beam in a homogeneous space to the case of an inhomogeneous medium is discussed. In free space, this procedure isolates the component of the registered field, which represents the contribution of a beam of parallel rays. In an inhomogeneous medium, the procedure should isolate the contribution of a beam of rays, which, as a rule, are not parallel. The generalization is carried out on the basis of the transition from the traditional representation of the registered field in the form of a superposition of plane waves to the coherent state expansion of the field borrowed from quantum mechanics. The general approach is illustrated using the example of the lobe formation of a vertical receiving antenna in an underwater acoustic waveguide.

Fulltext pdf (884 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.08.039229
Keywords: antenna, beamforming, beam of rays, coherent state, acoustic waveguide
PACS: 43.30.Cq, 43.30.Dr (all)
DOI: 10.3367/UFNe.2022.08.039229
URL: https://ufn.ru/en/articles/2023/9/g/
001112661900007
2-s2.0-85182872358
2023PhyU...66..951V
Citation: Virovlyansky A L "Isolation of the field component formed by a given beam of rays at the aperture of a receiving antenna in an inhomogeneous environment" Phys. Usp. 66 951–960 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, May 2022, revised: 5th, August 2022, 29th, August 2022

Оригинал: Вировлянский А Л «Выделение компоненты поля, формируемой заданным пучком лучей на апертуре приёмной антенны в неоднородной среде» УФН 193 1010–1020 (2023); DOI: 10.3367/UFNr.2022.08.039229

References (31) ↓ Cited by (1) Similar articles (9)

  1. Van Trees H L Detection, Estimation, And Modulation Theory Pt. 4 Optimum Array Processing (New York: John Wiley and Sons, 2002)
  2. Virovlyansky A L J. Acoust. Soc. Am. 141 1180 (2017)
  3. Virovlyansky A L, Kazarova A Yu, Lyubavin L Ya IEEE J. Oceanic Eng. 45 1583 (2020)
  4. Klauder J R, Sudarshan E C G Fundamentals Of Quantum Optics (New York: W.A. Benjamin, 1968); Translated into Russian, Klauder J R, Sudarshan E C G Osnovy Kvantovoi Optiki (Moscow: Mir, 1970)
  5. Schleich W P Quantum Optics In Phase Space (Berlin: Wiley-VCH, 2001)
  6. Landau L D, Lifshitz E M Mechanics (Oxford: Pergamon Press, 1976); Translated from Russian, Landau L D, Lifshitz E M Mekhanika (Moscow: Nauka, 1973)
  7. Goldstein H, Poole C, Safko J Classical Mechanics (San Francisco, CA: Addison Wesley, 2000)
  8. Makarov D, Prants S, Virovlyansky A, Zaslavsky G Ray And Wave Chaos In Ocean Acoustics: Chaos In Waveguides (Ser. on Complexity, Nonlinearity and Chaos) Vol. 1 (Singapore: World Scientific, 2010)
  9. Flatté S M (Ed.) et al Sound Transmission Through A Fluctuating Ocean (Cambridge: Cambridge Univ. Press, 1979)
  10. Colosi J A Sound Propagation Through The Stochastic Ocean (New York: Cambridge Univ. Press, 2016)
  11. Virovlyansky A L, Makarova Iu M Europhys. Lett. 123 54004 (2018)
  12. Jensen F B et al Computational Ocean Acoustics (New York: Springer, 2011)
  13. Virovlyansky A L, Kazarova A Yu, Lyubavin L Ya J. Acoust. Soc. Am. 121 2542 (2007)
  14. Alonso M A Phase-Space Optics: Fundamentals And Applications (Eds M E Testorf, B M Hennelly, J Ojeda-Castañeda) (New York: McGraw-Hill, 2010) p. 237
  15. Glauber R J Quantum Theory Of Optical Coherence. Selected Papers And Lectures (Weinheim: Wiley-VCH, 2007)
  16. Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon Press, 1977); Translated from Russian, Landau L D, Lifshitz E M Kvantovaya Mekhanika: Nerelyativistskaya Teoriya (Moscow: Nauka, 1974)
  17. Brekhovskikh L M, Lysanov Yu P Fundamentals Of Ocean Acoustics (New York: Springer, 2003); Translated from Russian, Brekhovskikh L M, Lysanov Yu P Teoreticheskie Osnovy Akustiki Okeana (Moscow: Nauka, 2007)
  18. Baggeroer A B, Kuperman W A, Mikhalevsky P N IEEE J. Oceanic Eng. 18 401 (1993)
  19. Etter P C Underwater Acoustic Modeling And Simulation (Boca Raton, FL: CRC Press, Taylor and Francis Group, 2018)
  20. Schmidt H et al J. Acoust. Soc. Am. 88 1851 (1990)
  21. Krolik J L J. Acoust. Soc. Am. 92 1408 (1992)
  22. Byun G et al J. Acoust. Soc. Am. 147 1231 (2020)
  23. Richardson A M, Nolte L W J. Acoust. Soc. Am. 89 2280 (1991)
  24. Le Gall Y et al J. Acoust. Soc. Am. 139 993 (2016)
  25. Sazontov A G, Malekhanov A I Acoust. Phys. 61 213 (2015); Sazontov A G, Malekhanov A I Akust. Zh. 61 233 (2015)
  26. Baggeroer A B Proc. of the 1st Intern. Conf. and Exhibition on Underwater Acoustics, Greece, Heraklion, 2013 (Eds J S Papadakis, L Bjørnø) p. 41
  27. Virovlyansky A L J. Acoust. Soc. Am. 142 EL136 (2017)
  28. Abdullaev S S, Zaslavskii G M Sov. Phys. Usp. 38 645 (1991); Abdullaev S S, Zaslavskii G M Usp. Fiz. Nauk 161 (8) 1 (1991)
  29. Virovlyansky A L, Makarov D V, Prants S V Phys. Usp. 55 18 (2012); Virovlyansky A L, Makarov D V, Prants S V Usp. Fiz. Nauk 182 19 (2012)
  30. Virovlyansky A L J. Acoust. Soc. Am. 148 2351 (2020)
  31. Virovlyansky A L, Kazarova A Yu Acoust. Phys. 68 162 (2022); Virovlyansky A L, Kazarova A Yu Akust. Zh. 68 190 (2022)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions