Issues

 / 

2023

 / 

September

  

Reviews of topical problems


Generation of X-ray radiation in the inner regions of accretion disks around black holes, neutron stars, and white dwarfs

 ,  , § 
Astro Space Centre, Lebedev Physical Institute, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russian Federation

The most important temporal and spectral characteristics of X-ray radiation arising near black holes, neutron stars, and white dwarfs in the presence of matter accreting from the disk that surrounds the compact object are reviewed. It is shown how these characteristics are related to the physical parameters of these systems. A key characteristic of X-ray radiation is photon index Γ, defined as the slope of the emission spectrum in the energy range of 0.5—500 keV. If the compact object of a binary is a black hole, the X-ray radiation features saturation of the photon index (with increasing accretion rate), its value is ranging from 2 to 3. A correlation between Γ and the quasi-periodic oscillation frequency, νQPO, is revealed in these systems, which can be employed to independently determine the black hole mass using scaling method. The developed model of radiation transfer is now the basis of a scaling method which provides an independent estimate of mass also in the case of a supermassive black hole. The generated X-ray spectrum can be presented in a wide energy range as a combination of thermal, Comptonized, and Gaussian components that describe the emission lines. A model of radiative transfer in the vicinity of black holes and neutron stars can also explain the properties of the X-ray emission when the compact object is a white dwarf. The example of four dwarf novae, U Gem, SS Cyg, VW Hyi, and SS Aur, is used to show that the continuum of the X-ray spectrum of nonmagnetic cataclysmic variables can be described as a result of the Comptonization of soft photons on hot electrons of the accretion cloud that surrounds the white dwarf.

Fulltext pdf (1.6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.11.039272
Keywords: accretion, accretion disk, nonthermal radiation mechanism
PACS: 97.80.Jp
DOI: 10.3367/UFNe.2022.11.039272
URL: https://ufn.ru/en/articles/2023/9/b/
001112661900002
2-s2.0-85182871146
2023PhyU...66..885T
Citation: Titarchuk L G, Mikheeva E V, Lukash V N "Generation of X-ray radiation in the inner regions of accretion disks around black holes, neutron stars, and white dwarfs" Phys. Usp. 66 885–913 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, April 2022, revised: 6th, October 2022, 10th, November 2022

Оригинал: Титарчук Л Г, Михеева Е В, Лукаш В Н «Формирование рентгеновского излучения во внутренних областях аккреционных дисков вокруг чёрных дыр, нейтронных звёзд и белых карликов» УФН 193 940–970 (2023); DOI: 10.3367/UFNr.2022.11.039272

References (90) Similar articles (20) ↓

  1. P.B. Ivanov, E.V. Mikheeva et alInterferometric observations of supermassive black holes in the millimeter wave band62 423–449 (2019)
  2. Yu.A. Shchekinov, V.N. Lukash et alInterstellar and intergalactic gas in the far IR and submillimeter spectral ranges60 961–993 (2017)
  3. V.N. Lukash, E.V. Mikheeva, A.M. Malinovsky “Formation of the large-scale structure of the Universe54 983–1005 (2011)
  4. A.G. Doroshkevich, V.N. Lukash, E.V. Mikheeva “A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard model55 3–17 (2012)
  5. N.I. Shakura, K.A. Postnov et alQuasi-spherical subsonic accretion in X-ray pulsars56 321–346 (2013)
  6. B.M. Vladimirskii, A.M. Gal’per et alCygnus X-3: a powerful galactic source of hard radiation28 153–169 (1985)
  7. V.P. Krainov, M.B. Smirnov “The evolution of large clusters under the action of ultrashort superintense laser pulses43 901–920 (2000)
  8. A.M. Cherepashchuk “Masses of black holes in binary stellar systems39 759–780 (1996)
  9. E.O. Babichev, V.I. Dokuchaev, Yu.N. Eroshenko “Black holes in the presence of dark energy56 1155–1175 (2013)
  10. A.I. Nikishov, V.I. Ritus “Gravitational radiation of systems and the role of their force field53 1093–1122 (2010)
  11. D.N. Razdoburdin, V.V. Zhuravlev “Transient dynamics of perturbations in astrophysical disks58 1031–1058 (2015)
  12. A.M. Fridman, D.V. Bisikalo “The nature of accretion disks of close binary stars: overreflection instability and developed turbulence51 551–576 (2008)
  13. B.M. Smirnov, G.V. Shlyapnikov “Infrared radiation transfer in molecular gases23 179–198 (1980)
  14. V.L. Ginzburg “PULSARS (Theoretical Concepts)14 83–103 (1971)
  15. N.A. Veretenov, N.N. Rosanov, S.V. Fedorov “Laser solitons: topological and quantum phenomena65 131–162 (2022)
  16. A.Y. Potekhin “Atmospheres and radiating surfaces of neutron stars57 735–770 (2014)
  17. S.V. Bulanov, T.Zh. Esirkepov et alRelativistic mirrors in plasmas — novel results and perspectives56 429–464 (2013)
  18. M.V. Kuzelev, A.A. Rukhadze “Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasma51 989–1018 (2008)
  19. K.Yu. Platonov, G.D. Fleishman “Transition radiation in media with random inhomogeneities45 235–291 (2002)
  20. D.G. Yakovlev, K.P. Levenfish, Yu.A. Shibanov “Cooling of neutron stars and superfluidity in their cores42 737 (1999)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions