Issues

 / 

2023

 / 

July

  

Instruments and methods of investigation


Explosive emission processes in thermonuclear facilities with magnetic plasma confinement and in linear electron—positron colliders

  a, b, c,   b
a Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
c Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation

A model of the phenomenon of explosive electron emission based on its similarity to the electrical explosion of conductors is presented. With this model, the microexplosive processes occurring on a cathode surface due to the action of the explosive emission current have been simulated. The simulation results have been used to analyze explosive emission processes caused by the operation of unipolar arcs in thermonuclear reactors with magnetic plasma confinement and by the initiation of radiofrequency vacuum breakdowns in the accelerating structures of linear electron—positron colliders. The structure of the arc discharge cathode spot and the erosion characteristics have been investigated for nanostructured tungsten (W-fuzz) surfaces formed in thermonuclear reactors with magnetic plasma confinement. For radiofrequency vacuum breakdowns, the initiating parameters have been estimated, and prebreakdown and microexplosive processes have been simulated.

Fulltext pdf (1.4 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.02.039163
Keywords: pulsed vacuum breakdown, explosive electron emission, unipolar arc, cathode spot, field emission, radiofrequency vacuum breakdown
PACS: 52.40.Hf, 52.80.Vp, 79.70.+q (all)
DOI: 10.3367/UFNe.2022.02.039163
URL: https://ufn.ru/en/articles/2023/7/d/
001097028100004
2-s2.0-85182877942
2023PhyU...66..704B
Citation: Barengolts S A, Mesyats G A "Explosive emission processes in thermonuclear facilities with magnetic plasma confinement and in linear electron—positron colliders" Phys. Usp. 66 704–721 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, January 2022, 28th, February 2022

Оригинал: Баренгольц С А, Месяц Г А «Взрывоэмиссионные процессы в термоядерных установках с магнитным удержанием плазмы и линейных электрон-позитронных коллайдерах» УФН 193 751–769 (2023); DOI: 10.3367/UFNr.2022.02.039163

References (112) ↓ Cited by (1) Similar articles (9)

  1. Mesyats G A J. Nucl. Mater. 128-129 618 (1984)
  2. Mesyats G A High Power Microwave Generation and Applications: Proc. of the Course and Workshop, Varenna, Italy, 9-17 September, 1991 (Eds D Akulina, E Sindoni, C Wharton) (Bologna, Italy: Publ. for the Società Italiana di Fisica by Editrice Compositori, 1992) p. 345
  3. Mesyats G A ""Issledovaniya po generirovaniyu nanosekundnykh impul’sov bol’shoi moshchnosti" ("Investigations on the generation of nanosecond high-power pulses")" Doctoral Thesis in Engineering (Tomsk: Tomsk Polytechnical Institute, 1966)
  4. Bugaev S P et al Sov. Phys. Usp. 18 51 (1975); Bugaev S P et al Usp. Fiz. Nauk 115 101 (1975)
  5. Litvinov E A, Mesyats G A, Proskurovskii D I Sov. Phys. Usp. 26 138 (1983); Litvinov E A, Mesyats G A, Proskurovskii D I Usp. Fiz. Nauk 139 265 (1983)
  6. Mesyats G A, Proskurovsky D I Pulsed Electrical Discharge In Vacuum (Berlin: Springer, 1989)
  7. Mesyats G A Pulsed Power (Berlin: Springer Science and Business Media, 2007)
  8. Mesyats G A Cathode Phenomena In A Vacuum Discharge: The Breakdown, The Spark, And The Arc (Moscow: Nauka Publ., 2000); Translated from Russian, Mesyats G A Ektony V Vakuumnom Razryade: Proboi, Iskra, Duga (Moscow: Nauka, 2000)
  9. Kartsev G K et al Sov. Phys. Dokl. 15 475 (1970); Kartsev G K et al Dokl. Akad. Nauk SSSR 192 309 (1970)
  10. Mitterauer J et al Proc. VII Intern. Symp. on Discharges and Electrical Insulation in Vacuum (Novosibirsk: USSR, 1976) p. 83
  11. Fursey G N IEEE Trans. Electr. Insul. EI-20 (4) 659 (1985)
  12. Anderson G W, Neilson F W Exploding Wires (Eds W G Chace, H K Moore) (New York: Plenum Press, 1962)
  13. Oreshkin V I, Baksht R B IEEE Trans. Plasma Sci. 48 1214 (2020)
  14. Mesyats G A IEEE Trans. Plasma Sci. 23 879 (1995)
  15. Mesyats G A Phys. Usp. 38 567 (1995); Mesyats G A Usp. Fiz. Nauk 165 601 (1995)
  16. Mesyats G A IEEE Trans. Plasma Sci. 41 676 (2013)
  17. Shmelev D L, Barengolts S A IEEE Trans. Plasma Sci. 41 1959 (2013)
  18. Barengolts S A, Shmelev D L, Uimanov I V IEEE Trans. Plasma Sci. 43 2236 (2015)
  19. Barengolts S A et al J. Appl. Phys. 129 133301 (2021)
  20. Kesaev I G Katodnye Protsessy Elektricheskoi Dugi (Cathodic Processes Of An Electric Arc) (Moscow: Nauka, 1968)
  21. Barengolts S A, Mesyats G A, Shmelev D L J. Exp. Theor. Phys. 93 1065 (2001); Barengolts S A, Mesyats G A, Shmelev D L Zh. Eksp. Teor. Fiz. 120 1227 (2001)
  22. Mesyats G A, Barengol’ts S A Phys. Usp. 45 1001 (2002); Mesyats G A, Barengol’ts S A Usp. Fiz. Nauk 172 1113 (2002)
  23. Oreshkin V I et al Phys. Plasmas 11 4771 (2004)
  24. Oreshkin V I et al Phys. Plasmas 23 122107 (2016)
  25. Slivkov I N Elektroizolyatsiya I Razryad V Vakuume (Electrical Isolation And Discharge In Vacuum) (Moscow: Atomizdat, 1972)
  26. Barengolts S A et al Phys. Rev. Accel. Beams 21 061004 (2018)
  27. Barengolts S A et al IEEE Trans. Plasma Sci. 47 3406 (2019)
  28. Tkachenko S I et al High Temp. 39 674 (2001); Tkachenko S I et al Teplofiz. Vys. Temp. 39 728 (2001)
  29. Khishchenko K V et al Int. J. Thermophys. 23 1359 (2002)
  30. Loskutov V V, Luchinskii A V, Mesyats G A Sov. Phys. Dokl. 28 654 (1983); Loskutov V V, Luchinskii A V, Mesyats G A Dokl. Akad. Nauk SSSR 271 1120 (1983)
  31. Bushman A V et al Sov. Phys. Dokl. 35 561 (1990); Bushman A V et al Dokl. Akad. Nauk SSSR 312 1368 (1990)
  32. Shmelev D L, Litvinov E A IEEE Trans. Plasma Sci. 25 533 (1997)
  33. Shmelev D L, Litvinov E A IEEE Trans. Dielectr. Electr. Insul. 6 441 (1999)
  34. OreshkE V et al 7th Intern. Congress on Energy Fluxes and Radiation Effects, EFRE 2020, September 14-26, 2020, Tomsk, Russia (Tomsk: Publ. House of IAO SB RAS, 2020) p. 408
  35. Oreshkin V I, Barengolts S A, Chaikovskii S A Tech. Phys. 52 642 (2007); Oreshkin V I, Barengolts S A, Chaikovskii S A Zh. Tekh. Fiz. 77 (5) 108 (2007)
  36. Robson A E, Thonemann P C Proc. Phys. Soc. 73 508 (1959)
  37. Zykova N M, Nedospasov A V, Petrov V G High Temp. 21 600 (1983); Zykova N M, Nedospasov A V, Petrov V G Teplofiz. Vys. Temp. 21 778 (1983)
  38. Tien J K et al J. Nucl. Mater. 76-77 481 (1978)
  39. Schwirzke F, Taylor R J J. Nucl. Mater. 93-94 780 (1980)
  40. Höthker K et al J. Nucl. Mater. 93-94 785 (1980)
  41. Stampa A, Kruger H J. Phys. D 16 2135 (1983)
  42. Schwirzke F R IEEE Trans. Plasma Sci. 19 690 (1991)
  43. Loarte A et al Nucl. Fusion 47 S203 (2007)
  44. Federici G et al Nucl. Fusion 41 1967 (2001)
  45. Roth J et al Plasma Phys. Control. Fusion 50 103001 (2008)
  46. Rohde V et al J. Nucl. Mater. 415 S46 (2011)
  47. Rohde V et al J. Nucl. Mater. 438 S800 (2013)
  48. Rohde V, Balden M, the ASDEX Upgrade Team Nucl. Mater. Energy 9 36 (2016)
  49. Tokitani M et al Nucl. Fusion 51 102001 (2011)
  50. Rudakov D L et al J. Nucl. Mater. 438 S805 (2013)
  51. Rudakov D L et al Phys. Scr. 2016 014055 (2016)
  52. Bykov I et al Phys. Scr. 2017 014034 (2017)
  53. Kajita S et al Nucl. Fusion 53 053013 (2013)
  54. Savrukhin P V, Shestakov E A Phys. Plasmas 26 092505 (2019)
  55. Dhard C P et al Phys. Scr. 2020 (T171) 014033 (2020)
  56. Barengolts S A, Mesyats G A, Tsventukh M M J. Exp. Theor. Phys. 107 1039 (2008); Barengolts S A, Mesyats G A, Tsventukh M M Zh. Eksp. Teor. Fiz. 134 1213 (2008)
  57. Federici G, Loarte A, Strohmayer G Plasma Phys. Control. Fusion 45 1523 (2003)
  58. Doyle E J et al Nucl. Fusion 47 S18 (2007)
  59. Takamura S et al Plasma Fusion Res. 1 051 (2006)
  60. Baldwin M J, Doerner R P Nucl. Fusion 48 035001 (2008)
  61. Kajita S et al Nucl. Fusion 49 095005 (2009)
  62. Pitts R A et al J. Nucl. Mater. 438 S48 (2013)
  63. De Temmerman G, Hirai T, Pitts R A Plasma Phys. Control. Fusion 60 044018 (2018)
  64. Kajita S, Takamura S, Ohno N Nucl. Fusion 49 032002 (2009)
  65. Kajita S et al Phys. Lett. A 373 4273 (2009)
  66. Kajita S et al Plasma Phys. Control. Fusion 54 035009 (2012)
  67. Hwangbo D et al IEEE Trans. Plasma Sci. 47 3617 (2019)
  68. Hwangbo D et al Contrib. Plasma Phys. 58 608 (2018)
  69. Hwangbo D et al Nucl. Mater. Energy 12 386 (2017)
  70. Hwangbo D et al Results Phys. 4 33 (2014)
  71. Kajita S et al J. Appl. Phys. 116 233302 (2014)
  72. Barengolts S A et al IEEE Trans. Plasma Sci. 46 4044 (2018)
  73. Aussems D U B et al J. Appl. Phys. 116 063301 (2014)
  74. Hwangbo D et al Jpn. J. Appl. Phys. 52 11NC02 (2013)
  75. Hwangbo D et al Plasma Sources Sci. Technol. 29 125015 (2020)
  76. Barengolts S A et al Nucl. Fusion 60 044001 (2020)
  77. Hwangbo D et al IEEE Trans. Plasma Sci. 45 2080 (2017)
  78. Barengolts S A, Mesyats G A, Tsventoukh M M IEEE Trans. Plasma Sci. 39 1900 (2011)
  79. Nishijima D et al J. Nucl. Mater. 415 S96 (2011)
  80. Kajita S et al Results Phys. 6 877 (2016)
  81. Barengolts S A, Mesyats G A, Tsventoukh M M Nucl. Fusion 50 125004 (2010)
  82. Zinov’ev V E Teplofizicheskie Svoistva Metallov Pri Vysokikh Temperaturakh (Thermophysical Properties Of Metals At High Temperatures) (Moscow: Metallurgiya, 1989), Handbook
  83. Kimblin C W J. Appl. Phys. 44 3074 (1973)
  84. Anders A et al IEEE Trans. Plasma Sci. 33 1532 (2005)
  85. Zeldovich Y B, Rayzer Y P Physics Of Shock Waves And High-Temperature Hydrodynamic Phenomena (New York: Academic Press, 1966, 1967); Translated from Russian, Zeldovich Y B, Rayzer Y P Fizika Udarnykh Voln I Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (Moscow: Nauka, 1966)
  86. Anders A Phys. Rev. E 55 969 (1997)
  87. Anders A et al Plasma Sources Sci. Technol. 12 63 (1992)
  88. Onufriev S V High Temp. 49 205 (2011); Onufriev S V Teplofiz. Vys. Temp. 49 213 (2011)
  89. Smirnov R D et al Phys. Plasmas 22 012506 (2015)
  90. De Temmerman G, Doerner R P, Pitts R A Nucl. Mater. Energy 19 255 (2019)
  91. Agee F J IEEE Trans. Plasma Sci. 26 235 (1998)
  92. Guignard G (Ed.) CERN 2000-008 (Geneva: CERN, 2000)
  93. Aicheler M et al. (Eds) CLIC Conceptual Design Report CERN 2012-007 (Geneva: CERN, 2012)
  94. Wuensch W CERN-OPEN-2014-028, CLIC-Note-1025 (Geneva: CERN, 2013)
  95. Wu X et al Phys. Rev. Accel. Beams 20 052001 (2017)
  96. Wuensch W et al Phys. Rev. Accel. Beams 20 011007 (2017)
  97. Degiovanni A, Wuensch W, Giner Navarro J Phys. Rev. Accel. Beams 19 032001 (2016)
  98. Grudiev A, Calatroni S, Wuensch W Phys. Rev. ST Accel. Beams 12 102001 (2009)
  99. Descoeudres A et al Phys. Rev. ST Accel. Beams 12 092001 (2009)
  100. Barbour J P et al Phys. Rev. 92 45 (1953)
  101. Barengolts S A, Kreindel M Y, Litvinov E A IEEE Trans. Plasma Sci. 26 252 (1998)
  102. Sokolovski D, Baskin L M Phys. Rev. A 36 4604 (1987)
  103. Wang J W, Loew G A Frontiers of Accelerator Technology. Proc. of the Joint US-CERN-Japan Intern. School, Hayama/Tsukuba, Japan, 9-18 September 1996 (Eds S I Kurokawa, M Month, S Turner) (Singapore: World Scientific, 1999) p. 768
  104. Barengolts S A, Uimanov I V, Shmelev D L IEEE Trans. Plasma Sci. 47 3400 (2019)
  105. Uimanov I V, Shmelev D L, Barengolts S A J. Phys. D 54 065205 (2020)
  106. Miller S C (Jr.), Good R H (Jr.) Phys. Rev. 91 174 (1953)
  107. Murphy E L, Good R H (Jr.) Phys. Rev. 102 1464 (1956)
  108. Anisimov S I, Imas Ya A, Romanov G S, Khodyko Yu V Deistvie Izlucheniya Bol’shoi Moshchnosti Na Metally (Effect Of High Power Radiation On Metals, Eds A M Bonch-Bruevich, M A El’yashevich) (Moscow: Nauka, 1970)
  109. Nordlund K, Djurabekova F Phys. Rev. ST Accel. Beams 15 071002 (2012)
  110. Pritzkau D P, Siemann R H Phys. Rev. ST Accel. Beams 5 112002 (2002)
  111. Simakov E I, Dolgashev V A, Tantawi S G Nucl. Instrum. Meth. Phys. Res. A 907 221 (2018)
  112. Barengolts S A et al IEEE Trans. Plasma Sci. 49 2470 (2021)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions