Issues

 / 

2023

 / 

July

  

Reviews of topical problems


A novel view of the nature of formation of metallic glasses, their structural relaxation, and crystallization

  a,   b
a Institute of Solid State Physics, Russian Academy of Sciences, Akademika Osip'yana str. 2, Chernogolovka, Moscow Region, 142432, Russian Federation
b Voronezh State Pedagogical University, Lenina st. 86, Voronezh, 394043, Russian Federation

An alternative concept of the formation of the defect structure and properties of metallic glasses — the interstitialcy theory (IT), which has been actively developed recently — is systematically laid out. The premises and basic hypotheses of the IT are presented, and the experimental data pertaining to the assessment of its adequacy are considered. The multifaceted relation between the relaxation of the shear elasticity and heat phenomena upon various types of thermal processing of metallic glasses is analyzed in detail. A simple mathematical IT formalism is shown to provide a good description of experimental data. The most important result of the IT is an adequate description of the excess thermodynamic potentials of metallic glasses. Problems surrounding the IT and approaches to its further development are considered.

Fulltext pdf (1.4 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.04.039173
Keywords: metallic glasses, structural relaxation, crystallization, defects, interstitialcy theory
PACS: 61.43.−j, 61.72.J−, 81.05.Kf (all)
DOI: 10.3367/UFNe.2022.04.039173
URL: https://ufn.ru/en/articles/2023/7/b/
Citation: Kobelev N P, Khonik V A "A novel view of the nature of formation of metallic glasses, their structural relaxation, and crystallization" Phys. Usp. 66 673–690 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, March 2022, revised: 21st, March 2022, 7th, April 2022

Оригинал: Кобелев Н П, Хоник В А «Новые представления о природе образования металлических стёкол, их структурной релаксации и кристаллизации» УФН 193 717–736 (2023); DOI: 10.3367/UFNr.2022.04.039173

References (108) ↓ Similar articles (20)

  1. Falk M L, Langer J S Phys. Rev. E 57 7192 (1998)
  2. Spaepen F Scr. Mater. 54 363 (2006)
  3. Miracle D B Acta Mater. 54 4317 (2006)
  4. Miracle D B et al MRS Bull. 32 629 (2007)
  5. Cheng Y Q, Ma E Prog. Mater. Sci. 56 379 (2011)
  6. Egami T Prog. Mater. Sci. 56 637 (2011)
  7. Peng H L, Li M Z, Wang W H Phys. Rev. Lett. 106 135503 (2011)
  8. Wang D P et al J. Appl. Phys. 114 173505 (2013)
  9. Zhang H et al J. Chem. Phys. 142 164506 (2015)
  10. Fan H et al Mater. Horiz. 8 2359 (2021)
  11. Richard D et al Phys. Rev. Lett. 126 015501 (2021)
  12. Zanotto E D, Mauro J C J. Non-Cryst. Solids 471 490 (2017)
  13. Chen J, Zhao J, Cheng Y Philos. Mag. 100 2938 (2020)
  14. Granato A V Phys. Rev. Lett. 68 974 (1992)
  15. Granato A V Eur. Phys. J. B 87 18 (2014)
  16. Konchakov R A et al JETP Lett. 109 460 (2019); Konchakov R A et al Pis’ma Zh. Eksp. Teor. Fiz. 109 473 (2019)
  17. Robrock K-H Mechanical Relaxation Of Interstitials In Irradiated Metals (Berlin: Springer-Verlag, 1989)
  18. Schilling W J. Nucl. Mater. 216 45 (1994)
  19. Wolfer W G Comprehensive Nuclear Materials Vol. 1 (Ed. R J M Konings, Sect. Eds T R Allen, R E Stoller, S Yamanaka) (Amsterdam: Elsevier, 2012) p. 1-45
  20. Ma P-W, Dudarev S L Phys. Rev. Mater. 3 043606 (2019)
  21. Nowick A S, Berry B S Anelastic Relaxation In Crystalline Solids (Materials Science Ser.) Vol. 1 (New York: Academic Press, 1972)
  22. Holder J, Granato A V, Rehn L E Phys. Rev. Lett. 32 1054 (1974)
  23. Rehn L E et al Phys. Rev. 10 349 (1974)
  24. Granato A V Metall. Mater. Trans. A 29 1837 (1998)
  25. Born M J. Chem. Phys. 7 591 (1939)
  26. Dederichs P H et al J. Nucl. Mater. 69-70 176 (1978)
  27. Nordlund K, Averback R S Phys. Rev. Lett. 80 4201 (1998)
  28. Khonik V, Kobelev N Metals 9 605 (2019)
  29. Kobelev N P, Khonik V A J. Exp. Theor. Phys. 126 340 (2018); Kobelev N P, Khonik V A Zh. Eksp. Teor. Fiz. 153 409 (2018)
  30. Gottstein G Physical Foundations Of Materials Science (Berlin: Springer, 2004); Translated into Russian, Gottstein G Fiziko-Khimicheskie Osnovy Materialovedeniya (Moscow: BINOM. Laboratoriya Znanii, 2014)
  31. Nordlund K et al Europhys. Lett. 71 625 (2005)
  32. Konchakov R A et al JETP Lett. 113 345 (2021); Konchakov R A et al Pis’ma Zh. Eksp. Teor. Fiz. 113 341 (2021)
  33. Kobelev N P, Khonik V A J. Non-Cryst. Solids 427 184 (2015)
  34. Makarov A S et al Intermetallics 87 1 (2017)
  35. Safonova E V et al J. Phys. Condens. Matter 28 215401 (2016)
  36. Goncharova E V et al JETP Lett. 106 35 (2017); Goncharova E V et al Pis’ma Zh. Eksp. Teor. Fiz. 106 39 (2017)
  37. Gordon C A, Granato A V Mater. Sci. Eng. A 370 83 (2004)
  38. Granato A V J. Non-Cryst. Solids 307 376 (2002)
  39. Granato A V J. Non-Cryst. Solids 352 4821 (2006)
  40. Safonova E V et al JETP Lett. 103 765 (2016); Safonova E V et al Pis’ma Zh. Eksp. Teor. Fiz. 103 861 (2016)
  41. Zener C J. Appl. Phys. 22 372 (1951)
  42. Holder J, Granato A V Phys. Rev. 182 729 (1969)
  43. Dyre J C Phys. Rev. B 75 092102 (2007)
  44. Granato A V Mater. Sci. Eng. A 521-522 6 (2009)
  45. Kretova M A, Konchakov R A, Kobelev N P, Khonik V A JETP Lett. 111 679 (2020); Kretova M A, Konchakov R A, Kobelev N P, Khonik V A Pis’ma Zh. Eksp. Teor. Fiz. 111 806 (2020)
  46. Granato A V J. Non-Cryst. Solids 156-158 402 (1993)
  47. Donati C et al Phys. Rev. Lett. 80 2338 (1998)
  48. Pazmiño Betancourt B A, Douglas J F, Starr F W J. Chem. Phys. 140 204509 (2014)
  49. Zhang H et al J. Chem. Phys. 154 084505 (2021)
  50. Oligschleger C, Schober H R Solid State Commun. 93 1031 (1995)
  51. Oligschleger C, Shober H R Phys. Rev. B 59 811 (1999)
  52. Goncharova E V et al J. Phys. Condens. Matter 29 305701 (2017)
  53. Brink T, Koch L, Albe K Phys. Rev. B 94 224203 (2016)
  54. Kobelev N P et al J. Appl. Phys. 115 033513 (2014)
  55. Konchakov R A et al JETP Lett. 115 280 (2022); Konchakov R A et al Pis’ma Zh. Eksp. Teor. Fiz. 115 308 (2022)
  56. Mitrofanov Y P et al Sci. Rep. 6 23026 (2016)
  57. Khonik S V et al Phys. Rev. Lett. 100 065501 (2008)
  58. Afonin G V et al J. Non-Cryst. Solids 580 121406 (2022)
  59. Makarov A S et al Scr. Mater. 168 10 (2019)
  60. Makarov A S et al J. Exp. Theor. Phys. 134 314 (2022); Makarov A S et al Zh. Eksp. Teor. Fiz. 161 373 (2022)
  61. Makarov A S et al J. Non-Cryst. Solids 558 120672 (2021)
  62. Makarov A S et al J. Non-Cryst. Solids 500 129 (2018)
  63. Mitrofanov Yu P et al Intermetallics 101 116 (2018)
  64. Wang W H Prog. Mater. Sci. 57 487 (2012)
  65. Gordon C A, Granato A V, Simmons R O J. Non-Cryst. Solids 205-207 216 (1996)
  66. Goncharova E V et al J. Non-Cryst. Solids 471 396 (2017)
  67. Makarov A S et al J. Non-Cryst. Solids 521 119474 (2019)
  68. Makarov A S et al J. Phys. Condens. Matter 32 495701 (2020)
  69. Mitrofanov Yu P, Kobelev N P, Khonik V A J. Non-Cryst. Solids 497 48 (2018)
  70. Nemilov S V J. Non-Cryst. Solids 353 4613 (2007)
  71. Angell C A J. Phys. Chem. Solids 49 863 (1988)
  72. Angell C A J. Non-Cryst. Solids 131-133 13 (1991)
  73. Angell C A Science 267 1924 (1995)
  74. Makarov A S et al J. Phys. Condens. Matter 33 275701 (2021)
  75. Dyre J C Rev. Mod. Phys. 78 953 (2006)
  76. Dyre J C, Olsen N B, Christensen T Phys. Rev. B 53 2171 (1996)
  77. Granato A V, Khonik V A Phys. Rev. Lett. 93 155502 (2004)
  78. Nemilov S V Glass Phys. Chem. 21 91 (1995)
  79. Trachenko K, Brazhkin V V Sci. Adv. 6 eaba3747 (2020)
  80. Sastry S Nature 409 164 (2001)
  81. Ohsaka K et al Appl. Phys. Lett. 62 2319 (1993)
  82. Busch R, Liu W, Johnson W L J. Appl. Phys. 83 4134 (1998)
  83. Jiang H-R et al J. Alloys Compd. 844 156126 (2020)
  84. Schawe J E K, Pogatscher S, Löffler J F Thermochim. Acta 685 178518 (2020)
  85. Makarov A S et al J. Phys. Condens. Matter 33 435701 (2021)
  86. Makarov A S et al JETP Lett. 115 102 (2022); Makarov A S et al Pis’ma Zh. Eksp. Teor. Fiz. 115 110 (2022)
  87. Afonin G V et al Acta Mater. 115 204 (2016)
  88. Phillips W A (Ed.) Amorphous Solids: Low-Temperature Properties (Topics in Current Physics) Vol. 24 (Berlin: Springer-Verlag, 1981)
  89. Gil L et al Phys. Rev. Lett. 70 182 (1993)
  90. Li Y et al Phys. Rev. B 74 052201 (2006)
  91. Zorn R Physics 4 44 (2011)
  92. Mitrofanov Yu P et al Phys. Status Solidi RRL 13 1900046 (2019)
  93. Makarov A et al Intermetallics 141 107422 (2022)
  94. Vasiliev A N et al Phys. Rev. B 80 172102 (2009)
  95. Granato A V Physica B 219-220 270 (1996)
  96. Khonik V A et al Phys. Status Solidi RRL 12 1700412 (2018)
  97. Ingle K W, Perrin R C, Schober H R J. Phys. F 11 1161 (1981)
  98. Miracle D B, Greer A L, Kelton K F J. Non-Cryst. Solids 354 4049 (2008)
  99. Hirata A et al Science 341 376 (2013)
  100. Zhu F et al Phys. Rev. Lett. 119 215501 (2017)
  101. Konchakov R A et al J. Phys. Condens. Matter 31 385703 (2019)
  102. Mitrofanov Yu P, Kobelev N P, Khonik V A Phys. Solid State 61 962 (2019); Mitrofanov Yu P, Kobelev N P, Khonik V A Fiz. Tverd. Tela 61 1040 (2019)
  103. Makarov A S et al Intermetallics 125 106910 (2020)
  104. Afonin G V et al Scr. Mater. 166 6 (2019)
  105. Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980); Translated from Russian, Landau L D, Lifshitz E M Statisticheskaya Fizika Vol. 1 (Moscow: Nauka, 1976)
  106. Makarov A S et al J. Phys. Condens. Matter 34 125701 (2022)
  107. Qiao J C et al Prog. Mater. Sci. 104 250 (2019)
  108. Yang D S et al J. Alloys Compd. 887 161392 (2021)

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions