Reviews of topical problems

Further research on the improvement of models and computer programs for the prediction and analysis of the physical properties of polymers

  a,   b
a Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova st. 28, Moscow, 119991, Russian Federation
b Moscow State University of Civil Engineering, Yaroslavskoe shosse 26, Moscow, 129337, Russian Federation

Investigations carried out in recent years on the development of models and computer programs for predicting and analyzing the physical properties of polymers are described. The method for constructing diagrams of compatibility of water permeability and the glass transition temperature, density, the thermal expansion coefficient, the cohesion energy, etc. is analyzed. Computer synthesis of network polymers and the possibility of predicting the thermal expansion coefficient of materials based on polyvinyl chloride and the elastic modulus of composites with a number of aromatic polymers are considered. The effect of a solvent (plasticizer) on strength and vis„cosity is analyzed. Considerable attention is paid to the use of self-oscillations excited during deformation of polymer films in actuators of nanomechanical devices. The calculation of the viscosity of dispersions of spherical nanoparticles with an adsorption polymer layer in a polymer melt and in a low-molecular liquid is carried out. The principles of predicting the coefficients of molecular packing of amorphous-crystalline polymers and their solvents are stated, and the influence of the chemical structure of heat-resistant thermoplastics on friction against steel is also estimated.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.12.039124
Keywords: diagrams of compatibility of physical properties of polymers, computer synthesis of network polymers, glass transition temperature, cohesion energy, water permeability, thermal expansion coefficient, actuators of nanomechanical devices, strength and viscosity of plasticized polymers, molecular packing coefficients, friction coefficients
PACS: 82.35.Lr, 82.35.Np, 83.80.Tc (all)
DOI: 10.3367/UFNe.2021.12.039124
Citation: Askadskii A A, Matseevich T A "Further research on the improvement of models and computer programs for the prediction and analysis of the physical properties of polymers" Phys. Usp. 66 586–627 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, September 2021, revised: 22nd, November 2021, 1st, December 2021

Оригинал: Аскадский А А, Мацеевич Т А «Дальнейшее развитие работ по усовершенствованию моделей и компьютерных программ по предсказанию и анализу физических свойств полимеров» УФН 193 625–668 (2023); DOI: 10.3367/UFNr.2021.12.039124

References (142) Similar articles (20) ↓

  1. A.A. Askadskii, T.A. Matseevich “Latest developments of models and calculation schemes for the quantitative analysis of the physical properties of polymers63 162–191 (2020)
  2. D.S. Sanditov, M.I. Ojovan “Relaxation aspects of the liquid—glass transition62 111–130 (2019)
  3. Yu.A. Izyumov, E.Z. Kurmaev “Physical properties and electronic structure of superconducting compounds with the β-tungsten structure17 356–380 (1974)
  4. N.D. Kondratyuk, V.V. Pisarev “Theoretical and computational approaches to predicting the viscosity of liquids66 410–432 (2023)
  5. Yu.Kh. Vekilov, M.A. Chernikov “Quasicrystals53 537–560 (2010)
  6. S.V. Demishev, Yu.V. Kosichkin et alAmorphous semiconductors prepared by quenching under high pressure37 185–217 (1994)
  7. G.L. Belen’kii, E.Yu. Salaev, R.A. Suleimanov “Deformation effects in layer crystals31 434–455 (1988)
  8. A.A. Ovchinnikov, I.I. Ukrainskii, G.V. Kventsel’ “Theory of one-dimensional mott semiconductors and the electronic structure of long molecules having conjugated bonds15 575–591 (1973)
  9. I.V. Antonova “Straintronics of 2D inorganic materials for electronic and optical applications65 567–596 (2022)
  10. E.D. Eidelman “Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects64 535–557 (2021)
  11. D.A. Trunin “Pedagogical introduction to the Sachdev—Ye—Kitaev model and two-dimensional dilaton gravity64 219–252 (2021)
  12. A.I. Savvatimskii, S.V. Onufriev “Investigation of the physical properties of carbon under high temperatures (experimental studies)63 1015–1036 (2020)
  13. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocomposites58 33–60 (2015)
  14. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  15. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusion56 1074–1119 (2013)
  16. E.O. Babichev, V.I. Dokuchaev, Yu.N. Eroshenko “Black holes in the presence of dark energy56 1155–1175 (2013)
  17. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  18. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)
  19. V.S. Beskin “Magnetohydrodynamic models of astrophysical jets53 1199–1233 (2010)
  20. A.V. Eletskii “Carbon nanotube-based electron field emitters53 863–892 (2010)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions