Issues

 / 

2023

 / 

May

  

Reviews of topical problems


Bound states in the continuum in photonic structures

 a,  b,  b,  a,   b, c
a Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Mlls Road, Bldng 59, Canberra, 0200, Australia
b School of Physics and Engineering, ITMO University, Birzhevaya liniya V.O., 16, St. Peterburg, 199034, Russian Federation
c Harbin Engineering University, Qingdao Innovation and Development Center, Sansha road 1777, Qingdao, Shandong, 266000, China

Bound states in the continuum (BICs) are a striking example of how a solution to a simple problem of quantum mechanics, obtained about a century ago, can serve as an incentive to study a wide range of resonance phenomena in wave physics. Due to the giant radiative lifetime, BICs have found multiple applications in various fields of physics studying wave processes, in particular, in hydrodynamics, atomic phys„ics, and acoustics. In this review, we present a broad view of the physics of BICs and related effects, focusing primarily on photonic dielectric structures. We consider the history of the development of BIC studies, the main physical mechanisms of their formation, and specific examples of structures that can support such states. We also discuss possible practical applications of BICs in optics, photonics, and radiophysics.

Fulltext pdf (11 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.12.039120
Keywords: bound states in the continuum, metasurfaces, res„onators, Fano resonance, diffraction structures, nanophotonics
PACS: 42.25.Bs, 42.25.Fx, 42.79.Dj, 42.82.Et (all)
DOI: 10.3367/UFNe.2021.12.039120
URL: https://ufn.ru/en/articles/2023/5/c/
001112604700003
2-s2.0-85182892448
2023PhyU...66..494K
Citation: Koshelev K L, Sadrieva Z F, Shcherbakov A A, Kivshar Yu S, Bogdanov A A "Bound states in the continuum in photonic structures" Phys. Usp. 66 494–517 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, August 2021, revised: 5th, December 2021, 6th, December 2021

Оригинал: Кошелев К Л, Садриева З Ф, Щербаков А А, Кившарь Ю С, Богданов А А «Связанные состояния непрерывного спектра в фотонных структурах» УФН 193 528–553 (2023); DOI: 10.3367/UFNr.2021.12.039120

References (276) ↓ Cited by (52) Similar articles (20)

  1. von Neuman J, Wigner E Phys. Z. 30 467 (1929)
  2. Fonda L, Newton R G Ann. Physics 10 490 (1960)
  3. Stillinger F H, Herrick D R Phys. Rev. A 11 446 (1975)
  4. Stillinger F H, Weber T A Phys. Rev. A 10 1122 (1974)
  5. Robnik M J. Phys. A 19 3845 (1986)
  6. Pappademos J, Sukhatme U, Pagnamenta A Phys. Rev. A 48 3525 (1993)
  7. Friedrich H, Wintgen D Phys. Rev. A 31 3964 (1985)
  8. Nöckel J U Phys. Rev. B 46 15348 (1992)
  9. Cederbaum L S et al Phys. Rev. Lett. 90 013001 (2003)
  10. Sadreev A F, Bulgakov E N, Rotter I Phys. Rev. B 73 235342 (2006)
  11. Herrick D R Physica B+C 85 44 (1976)
  12. Stillinger F H Physica B+C 85 270 (1976)
  13. Capasso F et al Nature 358 565 (1992)
  14. Parker R J. Sound Vibration 5 330 (1967)
  15. Parker R J. Sound Vibration 4 62 (1966)
  16. Evans D, Levitin M, Vassiliev D J. Fluid Mech. 261 21 (1994)
  17. Ursell F Proc. R. Soc. Lond. A 435 575 (1991)
  18. Ursell F Math. Proc. Cambr. Philos. Soc. 47 347 (1951)
  19. Jones D S "The eigenvalues of ∇2u+λu=0 when the boundary conditions are given on semi-infinite domains" Math. Proc. Cambr. Philos. Soc. 49 668 (1953)
  20. Lyapina A et al J. Fluid Mech. 780 370 (2015)
  21. Marinica D, Borisov A, Shabanov S Phys. Rev. Lett. 100 183902 (2008)
  22. Bulgakov E N, Sadreev A F Phys. Rev. B 78 075105 (2008)
  23. Hsu C W et al Nat. Rev. Mater. 1 16048 (2016)
  24. Sadreev A F Rep. Prog. Phys. 84 055901 (2021)
  25. Azzam S I, Kildishev A V Adv. Opt. Mater. 9 2001469 (2021)
  26. Koshelev K, Bogdanov A, Kivshar Yu Sci. Bull. 64 836 (2019)
  27. Koshelev K, Bogdanov A, Kivshar Yu Opt. Photon. News 31 (1) 38 (2020)
  28. Plotnik Y et al Phys. Rev. Lett. 107 183901 (2011)
  29. Kazarinov R F, Sokolova Z N, Suris R A Sov. Phys. Tech. Phys. 21 130 (1976); Kazarinov R F, Sokolova Z N, Suris R A Zh. Tekh. Fiz. 46 229 (1976)
  30. Vincent P, Nevière M Appl. Phys. 20 345 (1979)
  31. Paddon P, Young J F Phys. Rev. B 61 2090 (2000)
  32. Inoue M, Ohtaka K, Yanagawa S Phys. Rev. B 25 689 (1982)
  33. Sakoda K Phys. Rev. B 51 4672 (1995)
  34. Sakoda K Phys. Rev. B 52 8992 (1995)
  35. Cowan A R et al J. Opt. Soc. Am. A 18 1160 (2001)
  36. Shipman S P, Venakides S Phys. Rev. E 71 026611 (2005)
  37. Bonnet E et al Opt. Quantum Electron. 35 1025 (2003)
  38. Yablonskii A I et al Phys. Status Solidi A 190 413 (2002)
  39. Henry C et al IEEE J. Quantum Electron. 21 151 (1985)
  40. Avrutskii I A et al Sov. J. Quantum Electron. 16 1063 (1986); Avrutskii I A et al Kvantovaya Elektron. 13 1629 (1986)
  41. Robertson W M et al Phys. Rev. Lett. 68 2023 (1992)
  42. Pacradouni V et al Phys. Rev. B 62 4204 (2000)
  43. Zhen B et al Phys. Rev. Lett. 113 257401 (2014)
  44. Bulgakov E N et al J. Opt. Soc. Am. B 35 1218 (2018)
  45. Jin J et al Nature 574 501 (2019)
  46. Hsu C W et al Nature 499 188 (2013)
  47. Fujita T et al Phys. Rev. B 57 12428 (1998)
  48. Yablonskii A L et al J. Phys. Soc. Jpn. 70 1137 (2001)
  49. Fan S, Joannopoulos J D Phys. Rev. B 65 235112 (2002)
  50. Tikhodeev S G et al Phys. Rev. B 66 045102 (2002)
  51. Ochiai T, Sakoda K Phys. Rev. B 63 125107 (2001)
  52. Volya A, Zelevinsky V Phys. Rev. C 67 054322 (2003)
  53. Dicke R H Phys. Rev. 93 99 (1954)
  54. Mlynek J A et al Nat. Commun. 5 5186 (2014)
  55. Cao H, Wiersig J Rev. Mod. Phys. 87 61 (2015)
  56. McEuen P "Nanostructures" Kittel C. Introduction To Solid State Physics 8th ed. (Hoboken, NJ: Wiley, 2005) p. 515, Ch. 18
  57. Vincent P, Nevière M Appl. Phys. 20 345 (1979)
  58. Gao X et al Sci. Rep. 6 31908 (2016)
  59. Bulgakov E N, Maksimov D N Phys. Rev. A 98 053840 (2018)
  60. Monticone F, Alù A Phys. Rev. Lett. 112 213903 (2014)
  61. Liberal I, Engheta N Sci. Adv. 2 e1600987 (2016)
  62. Lepetit T, Kanté B Phys. Rev. B 90 241103 (2014)
  63. Pilipchuk A S, Pilipchuk A A, Sadreev A F Phys. Scr. 95 085002 (2020)
  64. Sadrieva Z F et al Phys. Rev. A 99 053804 (2019)
  65. Yuan L, Lu Y Y Phys. Rev. A 102 033513 (2020)
  66. Gao X et al ACS Photon. 6 2996 (2019)
  67. Wang Y et al J. Opt. Soc. Am. B 33 2472 (2016)
  68. Kodigala A et al Nature 541 196 (2017)
  69. Ndangali R F, Shabanov S V J. Math. Phys. 51 102901 (2010)
  70. Bulgakov E N, Sadreev A F Phys. Rev. A 90 053801 (2014)
  71. Jackson J D Classical Electrodynamics 2nd ed. (New York: Wiley, 1975)
  72. Grahn P, Shevchenko A, Kaivola M New J. Phys. 14 093033 (2012)
  73. Miroshnichenko A E et al Nat. Commun. 6 8069 (2015)
  74. Yang Y, Bozhevolnyi S I Nanotechnology 30 204001 (2019)
  75. Poshakinskiy A V, Poddubny A N Phys. Rev. X 9 011008 (2019)
  76. Shamkhi H K et al Phys. Rev. Lett. 122 193905 (2019)
  77. Liu W, Kivshar Yu S Opt. Express 26 13085 (2018)
  78. Ruan Z, Fan S Phys. Rev. Lett. 105 013901 (2010)
  79. Ruan Z, Fan S Appl. Phys. Lett. 98 043101 (2011)
  80. Qian C et al Phys. Rev. Lett. 122 063901 (2019)
  81. Krasikov S et al Phys. Rev. Appl. 15 024052 (2021)
  82. Bohren C F, Huffman D R Absorption And Scattering Of Light By Small Particles (New York: Wiley, 1983)
  83. Sadrieva Z et al Phys. Rev. B 100 115303 (2019)
  84. Mylnikov V et al ACS Nano 14 7338 (2020)
  85. Ivchenko E L, Pikus G "Crystal symmetry" Superlattices And Other Heterostructures: Symmetry And Optical Phenomena (Springer Ser. in Solid-State Sciences) Vol. 110 (Berlin: Springer, 1995) p. 9
  86. Sakoda K Optical Properties Of Photonic Crystals (Springer Ser. in Optical Sciences) Vol. 80 (Berlin: Springer, 2005)
  87. Agranovich V M, Ginzburg V L Crystal Optics With Spatial Dispersion, And Excitons (Springer Ser. in Solid-State Sciences) Vol. 42 (Berlin: Springer, 2013); Translated from Russian, Agranovich V M, Ginzburg V L Kristallooptika S Uchetom Prostranstvennoi Dispersii I Teoriya Eksitonov (Moscow: Nauka, 1979)
  88. Dyakov S A et al Laser Photon. Rev. 15 2000242 (2021)
  89. Overvig A C et al Phys. Rev. B 102 035434 (2020); Overvig A C et al arXiv:1903.11125
  90. Doeleman H M et al Nat. Photon. 12 397 (2018)
  91. Yoda T, Notomi M Phys. Rev. Lett. 125 053902 (2020)
  92. Bulgakov E N, Maksimov D N Phys. Rev. Lett. 118 267401 (2017)
  93. Bykov D A, Bezus E A, Doskolovich L L Nanophotonics 9 83 (2019)
  94. Liu W et al Phys. Rev. Lett. 123 116104 (2019)
  95. Bulgakov E N, Sadreev A F Phys. Rev. A 96 013841 (2017)
  96. Huang C et al Science 367 1018 (2020)
  97. Bai T et al Opt. Express 29 25270 (2021)
  98. Wang B et al Nat. Photon. 14 623 (2020)
  99. Webster M A et al IEEE Photon. Technol. Lett. 19 429 (2007)
  100. Tummidi R S et al "Anomalous lossescurved waveguides and directional couplers at ’magic widths’" LEOS 2008 — 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, CA, USA, 09-13 November 2008 (Piscataway, NJ: IEEE, 2008) p. 521
  101. Nguyen T G et al Laser Photon. Rev. 13 1900035 (2019)
  102. Bezus E A, Bykov D A, Doskolovich L L Photon. Res. 6 1084 (2018)
  103. Azzam S I et al Phys. Rev. Lett. 121 253901 (2018)
  104. Liang Y et al Nano Lett. 20 6351 (2020)
  105. Sun S et al Phys. Rev. B 103 045416 (2021)
  106. Koshelev K et al Phys. Rev. Lett. 121 193903 (2018)
  107. Piper J R, Fan S ACS Photon. 1 347 (2014)
  108. Choi J M, Lee R K, Yariv A Opt. Lett. 26 1236 (2001)
  109. Pernice W H P et al Appl. Phys. Lett. 100 223501 (2012)
  110. Seok T J et al Nano Lett. 11 2606 (2011)
  111. Koshelev K et al ACS Photon. 6 1639 (2019)
  112. Platte W, Sauerer B IEEE Trans. Microwave Theory Tech. 37 139 (1989)
  113. Makarov S et al Nano Lett. 15 6187 (2015)
  114. Mazurenko D A et al Phys. Rev. Lett. 91 213903 (2003)
  115. Liu Z et al Phys. Rev. Lett. 123 253901 (2019)
  116. Hwang M-S et al Nat. Commun. 12 4135 (2021)
  117. Chukhrov A et al Phys. Rev. B 103 214312 (2021)
  118. Bulgakov E N, Pichugin K N, Sadreev A F Opt. Express 23 22520 (2015)
  119. Lannebère S, Silveirinha M G Nat. Commun. 6 8766 (2015)
  120. Sadrieva Z F et al ACS Photon. 4 723 (2017)
  121. Bulgakov E N, Maksimov D N Opt. Express 25 14134 (2017)
  122. Bulgakov E N, Sadreev A F Phys. Rev. A 97 033834 (2018)
  123. Bulgakov E N, Sadreev A F Phys. Rev. A 94 033856 (2016)
  124. PichugK, Sadreev A, Bulgakov E Nanophotonics 10 4341 (2021)
  125. Sidorenko M S et al Phys. Rev. Appl. 15 034041 (2021)
  126. Zakomirnyi V I et al Opt. Lett. 44 5743 (2019)
  127. Romano S et al Materials 11 526 (2018)
  128. Anthur A P et al Nano Lett. 20 8745 (2020)
  129. Chen Z et al Sci. Bull. 67 359 (2022)
  130. Ishizaki K, Okano M, Noda S J. Opt. Soc. Am. B 26 1157 (2009)
  131. Minkov M et al Opt. Express 21 28233 (2013)
  132. Biberman A et al Opt. Lett. 37 4236 (2012)
  133. Wolf P-E, Maret G Phys. Rev. Lett. 55 2696 (1985)
  134. Wiersma D S et al Nature 390 671 (1997)
  135. Poddubny A N et al Nat. Commun. 3 914 (2012)
  136. Limonov M F, De La Rue R M Optical Properties Of Photonic Structures: Interplay Of Order And Disorder (Boca Raton, FL: CRC Press, 2012)
  137. Liu C et al Phys. Rev. Lett. 123 163901 (2019)
  138. Galisteo-López J F et al Adv. Mater. 23 30 (2011)
  139. Astratov V N et al Phys. Rev. B 66 165215 (2002)
  140. Fan S, Villeneuve P R, Joannopoulos J D J. Appl. Phys. 78 1415 (1995)
  141. Lifshits I M, Gredeskul S A, Pastur L A Introduction To The Theory Of Disordered Systems (New York: Wiley, 1988); Translated from Russian, Lifshits I M, Gredeskul S A, Pastur L A Vvedenie V Teoriyu Neuporyadochennykh System (Moscow: Nauka, 1982)
  142. Ni L et al Opt. Express 25 5580 (2017)
  143. Maslova E E et al Nanophotonics 10 4313 (2021)
  144. Chen H L, Wang G, Lee R K Opt. Express 26 33205 (2018)
  145. Rayleigh (Lord) Philos. Mag. 24 145 (1887)
  146. Elachi C Proc. IEEE 64 1666 (1976)
  147. Suhara T, Nishihara H IEEE J. Quantum Electron. 22 845 (1986)
  148. Magnusson R, Ko Y H "Guided-mode resonance nanophotonics: fundamentals and applications" Proc. SPIE 9927 992702 (2016); Magnusson R, Ko Y H Nanoengineering: Fabrication, Properties, Optics, and Devices XIII, Intern. Conf., San Diego, CA, August 30-31, 2016
  149. Chang-Hasnain C J, Yang W Nanoengineering 4 379 (2012)
  150. Quaranta G et al Laser Photon. Rev. 12 1800017 (2018)
  151. Qiao P, Yang W, Chang-HasnaC J Adv. Opt. Photon. 10 180 (2018)
  152. Li L Gratings: Theory And Numeric Applications (Ed. E Popov) 2nd ed. (Marseille: Institut Fresnel, 2014) p. 13.1, Ch. 13
  153. Botten L C et al Opt. Acta Int. J. Opt. 28 1087 (1981)
  154. Weiss T, Muljarov E A Phys. Rev. B 98 085433 (2018)
  155. Neale S, Muljarov E A Phys. Rev. B 101 155128 (2020)
  156. Andreani L C, Gerace D Phys. Rev. B 73 235114 (2006)
  157. Modinos A, Stefanou N, Yannopapas V Opt. Express 8 197 (2021)
  158. Cotter N P K, Preist T W, Sambles J R J. Opt. Soc. Am. A 12 1097 (1995)
  159. Lalanne P, Hugonin J P, Chavel P J. Lightwave Technol. 24 2442 (2006)
  160. Karagodsky V, Chang-Hasnain C J Opt. Express 20 10888 (2012)
  161. Tishchenko A V Opt. Quantum Electron. 37 309 (2005)
  162. Karagodsky V, Chase C, Chang-Hasnain C J Opt. Lett. 36 1704 (2011)
  163. Ovcharenko A I et al Phys. Rev. B 101 155303 (2020)
  164. Bykov D A, Bezus E A, Doskolovich L L Phys. Rev. A 99 063805 (2019)
  165. Parriaux O, Lyndin N M J. Opt. 21 085608 (2019)
  166. Weiss T et al J. Opt. Soc. Am. A 28 238 (2011)
  167. Bykov D A, Doskolovich L L J. Lightwave Technol. 31 793 (2013)
  168. Whittaker D M, Culshaw I S Phys. Rev. B 60 2610 (1999)
  169. Krasnok A et al Adv. Opt. Photon. 11 892 (2019)
  170. Blanchard C, Hugonin J-P, Sauvan C Phys. Rev. B 94 155303 (2016)
  171. Pietroy D et al Opt. Express 15 9831 (2007)
  172. Neale S, Muljarov E A Phys. Rev. B 103 155112 (2021)
  173. Maystre D, Enoch S, Tayeb G Electromagnetic Theory And Applications For Photonic Crystals (Optical Science and Engineering) Vol. 102 (Ed. K Yasumoto) (Boca Raton, FL: CRC Press, 2006), Ch. 1
  174. Linton C M, McIver P J. Eng. Math. 30 661 (1996)
  175. Twersky V J. Appl. Phys. 23 407 (1952)
  176. Yuan L, Lu Y Y J. Phys. B 50 05LT01 (2017)
  177. Bulgakov E N, Maksimov D N Phys. Rev. A 96 063833 (2017)
  178. Yuan L, Lu Y Y Phys. Rev. A 95 023834 (2017)
  179. Snyder A W, Love J D Optical Waveguide Theory (New York: Springer, 2012)
  180. Bulgakov E, Sadreev A Adv. Electromagn. 6 (1) 1 (2017)
  181. Kim S, Kim K-H, Cahoon J F Phys. Rev. Lett. 122 187402 (2019)
  182. Kim S, Cahoon J F Acc. Chem. Res. 52 3511 (2019)
  183. Meade R D et al J. Appl. Phys. 75 4753 (1994)
  184. Johnson S G et al Phys. Rev. B 60 5751 (1999)
  185. Fan S, Joannopoulos J D Phys. Rev. B 65 235112 (2002)
  186. Yang Y et al Phys. Rev. Lett. 113 037401 (2014)
  187. Liang Y et al Phys. Rev. B 84 195119 (2011)
  188. Rybin M V et al Phys. Rev. Lett. 119 243901 (2017)
  189. Koshelev K, Kivshar Yu Nature 574 491 (2019)
  190. Han S et al Adv. Opt. Mater. 9 2002001 (2021)
  191. Gandolfi M et al Phys. Rev. A 104 023524 (2021)
  192. Odit M et al Adv. Mater. 33 2003804 (2021)
  193. Melik-Gaykazyan E et al Nano Lett. 21 1765 (2021)
  194. Silveirinha M G Phys. Rev. A 89 023813 (2014)
  195. Hayran Z, Monticone F ACS Photon. 8 813 (2021)
  196. Lepetit T et al Phys. Rev. B 82 195307 (2010)
  197. Jacobsen R E et al ACS Photon. 9 1936 (2022)
  198. Wiersig J Phys. Rev. Lett. 97 253901 (2006)
  199. Rybin M, Kivshar Yu Nature 541 164 (2017)
  200. Bogdanov A A et al Adv. Photon. 1 016001 (2019)
  201. Chen W, Chen Y, Liu W Laser Photon. Rev. 13 1900067 (2019)
  202. Koshelev K, Kivshar Yu ACS Photon. 8 102 (2021)
  203. Pichugin K N, Sadreev A F J. Appl. Phys. 126 093105 (2019)
  204. Kolodny S, Iorsh I Opt. Lett. 45 181 (2020)
  205. Gladyshev S, Frizyuk K, Bogdanov A Phys. Rev. B 102 075103 (2020)
  206. Bulgakov E, Pichugin K, Sadreev A Phys. Rev. A 104 053507 (2021)
  207. Huang L et al Adv. Photon. 3 016004 (2021)
  208. Yan W, Lalanne P, Qiu M Phys. Rev. Lett. 125 013901 (2020)
  209. Singh R et al Appl. Phys. Lett. 99 201107 (2011)
  210. Zhang F et al Appl. Phys. Lett. 105 172901 (2014)
  211. Fedotov V A et al Phys. Rev. Lett. 99 147401 (2007)
  212. Campione S et al ACS Photon. 3 2362 (2016)
  213. Vabishchevich P P et al ACS Photon. 5 1685 (2018)
  214. Jain A et al Adv. Opt. Mater. 3 1431 (2015)
  215. Ndao A e al. Nanophotonics 9 1081 (2020)
  216. Gorkunov M V, Antonov A A, Kivshar Yu S Phys. Rev. Lett. 125 093903 (2020)
  217. Gorkunov M V et al Adv. Opt. Mater. 9 2100797 (2021)
  218. Overvig A, Yu N, Alù A Phys. Rev. Lett. 126 073001 (2021)
  219. Tittl A et al Science 360 1105 (2018)
  220. Leitis A et al Sci. Adv. 5 eaaw2871 (2019)
  221. Foley J M, Young S M, Phillips J D Phys. Rev. B 89 165111 (2014)
  222. Foley J M, Phillips J D Opt. Lett. 40 2637 (2015)
  223. Cui X et al Sci. Rep. 6 36066 (2016)
  224. Doskolovich L L, Bezus E A, Bykov D A Photon. Res. 7 1314 (2019)
  225. Gentry C M, Popović M A Opt. Lett. 39 4136 (2014)
  226. Midya B, Konotop V V Opt. Lett. 43 607 (2018)
  227. Ha S T et al Nat. Nanotechnol. 13 1042 (2018)
  228. Wu M et al Nano Lett. 8 4 (2020)
  229. Azzam S I et al Laser Photon. Rev. 15 2000411 (2021)
  230. Muhammad N et al Nano Lett. 21 967 (2021)
  231. Yang J-H et al Laser Photon. Rev. 15 2100118 (2021)
  232. Ignatyeva D O, Belotelov V I Opt. Lett. 45 6422 (2020)
  233. Chernyak A M et al JETP Lett. 111 46 (2020); Chernyak A M et al Pis’ma Zh. Eksp. Teor. Fiz. 111 40 (2020)
  234. Zhen B et al Proc. Natl. Acad. Sci. USA 110 13711 (2013)
  235. Sun T et al Sci. Rep. 6 27482 (2016)
  236. Wang Y et al Biosensors Bioelectron. 107 224 (2018)
  237. Meudt M et al Adv. Opt. Mater. 8 2000898 (2020)
  238. Romano S et al J. Phys. Chem. C 122 19738 (2018)
  239. Romano S et al Opt. Express 27 18776 (2019)
  240. Wang Y et al Nanophotonics 10 1295 (2021)
  241. Yesilkoy F et al Nat. Photon. 13 390 (2019)
  242. Jahani Y et al Nat. Commun. 12 3246 (2021)
  243. Bulgakov E N, Sadreev A F Phys. Rev. B 81 115128 (2010)
  244. Ndangali F R, Shabanov S V Active Photon. Mater. V 86 88081F (2013)
  245. Bulgakov E N, Sadreev A F Opt. Lett. 39 5212 (2014)
  246. Pichugin K N, Sadreev A F J. Opt. Soc. Am. B 32 1630 (2015)
  247. Pichugin K N, Sadreev A F Phys. Lett. A 380 3570 (2016)
  248. Wang T, Zhang X Photon. Res. 5 629 (2017)
  249. Krasikov S D, Bogdanov A A, Iorsh I V Phys. Rev. B 97 224309 (2018)
  250. Yuan L, Lu Y Y SIAM J. Appl. Math. 80 864 (2020)
  251. Deka J et al Opt. Lett. 43 5242 (2018)
  252. Maksimov D N, Bogdanov A A, Bulgakov E N Phys. Rev. A 102 033511 (2020)
  253. Zograf G et al ACS Photon. 9 567 (2022)
  254. Sinev I S et al Nano Lett. 21 8848 (2021)
  255. Bahari B et al arXiv:1707.00181
  256. Yu Z et al Optica 6 1342 (2019)
  257. Yu Z et al Nat. Commun. 11 2602 (2020)
  258. Wang Y et al ACS Photon. 7 2643 (2020)
  259. Henkel A et al arXiv:2102.01686
  260. Han S et al Adv. Mater. 31 1901921 (2019)
  261. Mikheeva E et al Opt. Express 27 33847 (2019)
  262. Bernhardt N et al Nano Lett. 20 5309 (2020)
  263. Lochner F J F et al ACS Photon. 8 218 (2021)
  264. Carletti L et al Phys. Rev. Lett. 121 033903 (2018)
  265. Carletti L et al Phys. Rev. Res. 1 023016 (2019)
  266. Kolodny S A, Kozin V K, Iorsh I V JETP Lett. 114 124 (2021); Kolodny S A, KozV K, Iorsh I V Pis’ma Zh. Eksp. Teor. Fiz. 114 154 (2021)
  267. Poddubny A N, Smirnova D A arXiv:1808.04811
  268. Romano S et al Photon. Res. 6 726 (2018)
  269. Koshelev K, Bogdanov A, Kivshar Yu Sci. Bull. 64 836 (2019)
  270. Timofeev I V, Maksimov D N, Sadreev A F Phys. Rev. B 97 024306 (2018)
  271. Pankin P S et al Sci. Rep. 10 13691 (2020)
  272. Pankin P et al Commun. Phys. 3 91 (2020)
  273. Wu B-R et al Laser Photon. Rev. 15 2000290 (2021)
  274. Tong H et al Nat. Commun. 11 5216 (2020)
  275. Deriy I et al Phys. Rev. Lett. 128 084301 (2022)
  276. Huang S et al Phys. Rev. Appl. 14 021001 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions