Issues

 / 

2023

 / 

November

  

Instruments and methods of investigation


Laser reduction of graphene oxide: local control of material properties

 ,  , § , * , # 
National Research Tomsk Polytechnic University, prosp. Lenina 30, Tomsk, 634050, Russian Federation

We present a detailed analysis of the available data on the laser reduction of graphene oxide (GO). Issues of GO synthesis, structural models, and methods for controlling the properties of the material are considered. The chemical and thermal reduction mechanisms, the two main photoinduced mech„anisms for the transformation of dielectric GO films into conducting structures, are described, and their combined effect is illustrated. The impact of laser radiation parameters on the local functionalization of the material, which determines its properties, is critically analyzed. A summary table of the available data on the laser effect on GO is presented. Various applications are outlined, such as electronics, photovoltaics, energy, and flexible sensors, including medical applications. This study systematizes the results presented in the literature and contributes to the further study of the interaction of laser radiation with carbon materials, their transformation, control of properties, and the potential for application in all-carbon electronics.

Fulltext pdf (3.7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.12.039291
Keywords: carbon nanomaterials, graphene oxide (GO), reduced graphene oxide (rGO), laser surface modification, composite materials, nanocomposites, electrically conductive films, laser ablation
PACS: 68.65.Pq, 81.05.uc, 81.16.−c (all)
DOI: 10.3367/UFNe.2022.12.039291
URL: https://ufn.ru/en/articles/2023/11/c/
001131650500001
2-s2.0-85180722157
2023PhyU...66.1105M
Citation: Murastov G V, Lipovka A A, Fatkullin M I, Rodriguez R D, Sheremet E S "Laser reduction of graphene oxide: local control of material properties" Phys. Usp. 66 1105–1133 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 22nd, July 2022, 11th, December 2022

Оригинал: Мурастов Г В, Липовка А А, Фаткуллин М И, Родригес Р Д, Шеремет Е С «Лазерное восстановление оксида графена: локальное управление свойствами материала» УФН 193 1173–1204 (2023); DOI: 10.3367/UFNr.2022.12.039291

References (176) ↓ Cited by (3) Similar articles (11)

  1. Ferrari A C et al Nanoscale 7 4598 (2015)
  2. Novoselov K S et al Science 306 666 (2004)
  3. Gubin S P, Tkachev S V Radioelektron. Nanosist. Inform. Tekhnol. RENSIT 2 (1-2) 99 (2010)
  4. Jiat L X et al J. Taiwan Inst. Chem. Eng. 98 163 (2019)
  5. Mishra N et al Phys. Status Solidi A 213 2277 (2016)
  6. Tarcan R et al J. Mater. Chem. C 8 1198 (2020)
  7. Zhang Y et al Nano Today 5 (1) 15 (2010)
  8. Wan Z et al Adv. Mater. Technol. 3 1700315 (2018)
  9. Ye R, James D K, Tour J M Adv. Mater. 31 1803621 (2019)
  10. Kumar R et al Coord. Chem. Rev. 342 34 (2017)
  11. Chernozatonskii L A, Sorokin P B, Artukh A A Russ. Chem. Rev. 83 251 (2014); Chernozatonskii L A, Sorokin P B, Artukh A A Usp. Khim. 83 251 (2014)
  12. Wallace P R Phys. Rev. 71 622 (1947)
  13. Pérez E M, Martín N Chem. Soc. Rev. 44 6425 (2015)
  14. Lonkar S P, Deshmukh Y S, Abdala A A Nano Res. 8 1039 (2015)
  15. Shulga Yu M, Shulga N Yu, Parkhomenko Yu N Izv. Vyssh. Uchebn. Zaved. Mater. Elektron. Tekh. (3) 157 (2014)
  16. Poh H L et al Nanoscale 4 3515 (2012)
  17. Paredes J I et al Langmuir 24 10560 (2008)
  18. Yan J-A, Chou M Y Phys. Rev. B 82 125403 (2010)
  19. Brodie B Ann. Chim. Phys. 45 351 (1855)
  20. Staudenmaier L Berichte Deutschen Chem. Gesellschaft 3 1 (1898)
  21. Hummers W S, Offeman R E J. Am. Chem. Soc. 80 1339 (1958)
  22. Marcano D C et al ACS Nano 4 4806 (2010)
  23. Chen J et al Carbon 64 225 (2013)
  24. Guerrero-Contreras J, Caballero-Briones F Mater. Chem. Phys. 153 209 (2015)
  25. Sheshmani S, Fashapoyeh M A Acta Chim. Slov. 60 813 (2013)
  26. Lavin-Lopez M del P et al Indus. Eng. Chem. Res. 55 12836 (2016)
  27. Yu H et al Sci. Rep. 6 36810 (2016)
  28. Pendolino F, Armata N Graphene Oxide In Environmental Remediation Process (Cham: Springer, 2017)
  29. Wan Z et al Adv. Mater. Technol. 3 1700315 (2018)
  30. Lerf A et al J. Phys. Chem. B 102 4477 (1998)
  31. Hofmann U, Holst R Berichte Deutschen Chem. Gesellschaft A, B 72 754 (1939)
  32. Szabó T et al Chem. Mater. 18 2740 (2006)
  33. Ruess G Monatshefte Chemie 76 381 (1947)
  34. Nakajima T, Mabuchi A, Hagiwara R Carbon 26 357 (1988)
  35. Pei S, Cheng H-M Carbon 50 3210 (2012)
  36. Gómez-Navarro C et al Nano Lett. 10 1144 (2010)
  37. López-Díaz D et al Coat. World 10 524 (2020)
  38. Bagri A et al Nat. Chem. 2 581 (2010)
  39. Ju H-M et al Mater. Lett. 64 357 (2010)
  40. Agarwal V, Zetterlund P B Chem. Eng. J. 405 127018 (2021)
  41. Wei Z et al Science 328 1373 (2010)
  42. Su Y et al Nano Res. 6 842 (2013)
  43. Stankovich S et al Carbon 45 1558 (2007)
  44. Gilje S et al Nano Lett. 7 3394 (2007)
  45. Ekiz O O et al ACS Nano 5 2475 (2011)
  46. Voiry D et al Science 353 1413 (2016)
  47. Prezioso S et al Langmuir 28 5489 (2012)
  48. Cote L J et al J. Am. Chem. Soc. 131 11027 (2009)
  49. Cançado L G et al Nano Lett. 11 3190 (2011)
  50. Malinský P et al Phys. Chem. Chem. Phys. 19 10282 (2017)
  51. Kwon S-N et al Organic Electron. 34 67 (2016)
  52. Huh S H et al J. Korean Phys. Soc. 59 3428 (2011)
  53. Yang Y et al RSC Adv. 9 3597 (2019)
  54. Blanton T N, Majumdar D Powder Diffraction 28 68 (2013)
  55. Aslam S, Mustafa F, Ashfaq Ahmad M Ceramics Int. 44 6823 (2018)
  56. Gao X, Jang J, Nagas S J. Phys. Chem. C 114 832 (2010)
  57. Chua C K, Pumera M Chem. Commun. 52 72 (2016)
  58. Thakur S, Karak N Carbon 94 224 (2015)
  59. Qiu L et al Nat. Commun. 3 1241 (2012)
  60. Zhang J et al Chem. Commun. 46 1112 (2010)
  61. Zhu C et al ACS Nano 4 2429 (2010)
  62. Thakur S, Karak N Carbon 50 5331 (2012)
  63. Lingaraju K et al Biotechnol. Rep. Amst 24 e00376 (2019)
  64. Gao W et al Nat. Chem. 1 403 (2009)
  65. Faucett A C, Mativetsky J M Carbon 95 1069 (2015)
  66. Ghadim E E et al Appl. Surf. Sci. 301 183 (2014)
  67. Pei S, Cheng H-M Carbon 50 3210 (2012)
  68. Tu N D K et al Chem. Mater. 27 7362 (2015)
  69. Demazeau G J. Mater. Chem. 9 15 (1999)
  70. Eda G, Fanchini G, Chhowalla M Nat. Nanotechnol. 3 270 (2008)
  71. Pei S, Cheng H-M Carbon 50 3210 (2012)
  72. Gao W et al Nat. Chem. 1 403 (2009)
  73. Cao G et al Opto-Electron. Adv. 1 18001201 (2018)
  74. Cao G et al ACS Appl. Mater. Interfaces 11 20298 (2019)
  75. Jiang H-B et al Adv. Funct. Mater. 24 4595 (2014)
  76. Tran T X et al ACS Appl. Mater. Interfaces 10 39777 (2018)
  77. Gao W et al Nat. Nanotechnol. 6 496 (2011)
  78. Li X et al Nat. Commun. 6 6984 (2015)
  79. Yang C-R, Tseng S-F, Chen Y-T Appl. Surf. Sci. 444 578 (2018)
  80. Smirnov V A et al High Energy Chem. 45 57 (2011)
  81. Smirnov V A et al Nanotechnol. Russ. 7 156 (2012)
  82. Plotnikov V G et al High Energy Chem. 45 411 (2011)
  83. Williams G, Seger B, Kamat P V ACS Nano 2 1487 (2008)
  84. Williams G, Kamat P V Langmuir 25 13869 (2009)
  85. Shul’ga Y M et al High Energy Chem. 46 117 (2012)
  86. Vasilets V N et al High Energy Chem. 52 14 (2018)
  87. Zhao X et al Appl. Phys. Lett. 98 121905 (2011)
  88. Zhou Y et al Adv. Mater. 22 67 (2010)
  89. Trusovas R et al Carbon 52 574 (2013)
  90. Evlashin S A et al Adv. Mater. Interfaces 5 1800737 (2018)
  91. Orekhov N D et al Carbon 191 546 (2022)
  92. Thekkekara L V et al Appl. Phys. Lett. 107 031105 (2015)
  93. Huh S H "Thermal reduction of graphene oxide" Physics And Applications Of Graphene (Ed. S Mikhailov) (London: IntechOpen, 2011) p. 73
  94. Arul R et al Carbon 99 423 (2016)
  95. Petridis C et al Appl. Phys. Lett. 102 093115 (2013)
  96. Lima B S de et al Appl. Surface Sci. 144808 (2019)
  97. Jiang H-B et al ACS Appl. Mater. Interfaces 10 18416 (2018)
  98. Pérez L A, Bajales N, Lacconi G I Appl. Surf. Sci. 495 143539 (2019)
  99. Wan Z et al Carbon 141 83 (2019)
  100. Guo L et al J. Phys. Chem. C 116 3594 (2012)
  101. Evlashin S et al ACS Appl. Mater. Interfaces 8 28880 (2016)
  102. Al-Gaashani R et al Ceramics Int. 45 14439 (2019)
  103. Kovtun A et al Carbon 143 268 (2019)
  104. Kolesov B A Prikladnaya KR-Spektroskopiya (Applied Raman Spectroscopy) (Novosibirsk: Izd. SO RAN, 2018)
  105. Babaev A A et al Opt. Spectrosc. 125 1014 (2018); Babaev A A et al Opt. Spektrosk. 125 820 (2018)
  106. Childres I et al New Developments In Photon And Materials Research (Ed. J I Jang) (New York: Nova Science Publ., 2013) p. 403
  107. Eigler S, Dotzer C, Hirsch A Carbon 50 3666 (2012)
  108. Strankowski M et al J. Spectrosc. 2016 1 (2016)
  109. Kudin K N et al Nano Lett. 8 36 (2008)
  110. Rodriguez R D et al Carbon 151 148 (2019)
  111. Chen H-Y et al Chem. Phys. 430 13 (2014)
  112. Deng N-Q et al Carbon 109 173 (2016)
  113. Yung K C et al J. Appl. Phys. 113 244903 (2013)
  114. Bobrinetskiy I I et al Mater. Lett. 187 20 (2017)
  115. Kasischke M et al Appl. Surf. Sci. 445 197 (2018)
  116. Guan Y C et al Sci. Rep. 6 28913 (2016)
  117. Pei S et al Carbon 48 4466 (2010)
  118. Tao Y et al Appl. Phys. A 106 523 (2012)
  119. Mukherjee R et al ACS Nano 6 7867 (2012)
  120. Sokolov D A et al Carbon 53 81 (2013)
  121. Ma B et al Phys. Chem. Chem. Phys. 21 10125 (2019)
  122. Strong V et al ACS Nano 6 1395 (2012)
  123. Murastov G et al Biosensors Bioelectron. 112426 (2020)
  124. Kuhnel D T et al Adv. Mater. Technol. 4 1800232 (2019)
  125. Muttaqet al J. Mater. Sci. 52 749 (2017)
  126. Evlashin S et al ACS Appl. Mater. Interfaces 8 28880 (2016)
  127. Hosseindokht Z et al Superlatt. Microstruct. 140 106470 (2020)
  128. Prakash V et al Analyst 144 3297 (2019)
  129. Lin J et al Nat. Commun. 5 5714 (2014)
  130. Romero F J et al Nanomaterials 8 (2018)
  131. Yang D, Bock C J. Power Sources 337 73 (2017)
  132. Liu C et al Carbon 166 138 (2020)
  133. Ibrahim Y O et al Ceramics Int. 46 444 (2020)
  134. Ran P et al J. Mater. Chem. A 6 16430 (2018)
  135. Liu C et al Nano Lett. 10 4863 (2010)
  136. Pandolfo A G, Hollenkamp A F J. Power Sources 157 11 (2006)
  137. Ghoniem E et al J. Power Sources 324 272 (2016)
  138. El-Kady M F et al Science 335 1326 (2012)
  139. Borenstein A et al J. Mater. Chem. A 6 20463 (2018)
  140. Stoller M D et al Nano Lett. 8 3498 (2008)
  141. Romero F J et al Sensors Actuators A 274 148 (2018)
  142. Meng F-L, Guo Z, Huang X-J TrAC Trends Analyt. Chem. 68 37 (2015)
  143. Guo L et al Sci. Rep. 8 4918 (2018)
  144. Cui S et al Anal. Chem. 86 7516 (2014)
  145. Bhati V S et al ACS Appl. Mater. Interfaces 10 11116 (2018)
  146. Drmosh Q A et al Sensors Actuators B 290 666 (2019)
  147. Lai T et al Electrochim. Acta 138 48 (2014)
  148. Han B et al Sensors Actuators B 270 500 (2018)
  149. Silipigni L et al J. Instrum. 15 C04006 (2020)
  150. An J et al ACS Appl. Mater. Interfaces 9 44593 (2017)
  151. Searle A, Kirkup L Physiol. Meas. 21 271 (2000)
  152. He Y et al IEEE Photon. Technol. Lett. 28 1996 (2016)
  153. Romero F J et al Nanomaterials 9 897 (2019)
  154. Wang Q et al Appl. Phys. Lett. 112 133902 (2018)
  155. Han B et al Adv. Mater. 31 1806386 (2019)
  156. Zhang T-Y et al Appl. Phys. Lett. 111 121901 (2017)
  157. Bi H et al Nanoscale 5 9123 (2013)
  158. Sang W et al Macromol. Mater. Eng. 302 1700239 (2017)
  159. Low M J et al Appl. Surf. Sci. 526 146647 (2020)
  160. Zheng X et al Nat. Commun. 6 8433 (2015)
  161. Zheng X et al J. Phys. D 50 074003 (2017)
  162. Bi Y-G et al ACS Photon. 1 690 (2014)
  163. Wei J et al Opt. Lett. 42 911 (2017)
  164. Yuan Q, Lin C-T, Chee K W A APL Mater. 7 030901 (2019)
  165. Huang L et al Carbon 49 2431 (2011)
  166. Malinský P et al EPJ Web Conf. 167 04010 (2018)
  167. de Lima B S, Bernardi M I B, Mastelaro V R Appl. Surf. Sci. 506 144808 (2020)
  168. Malek Hosseini S M B et al Appl. Surf. Sci. 427 507 (2018)
  169. Das S R et al Nanoscale 8 15870 (2016)
  170. Romero F J et al Sensors Actuators B 287 459 (2019)
  171. Watanabe A et al Proc. SPIE 10906 1090612 (2019)
  172. Komarov I A et al Metodologicheskie Aspekty Skaniruyushchei Zondovoi Mikroskopii (Eds T A Kuznetsov et al) (Minsk: Inst. Teplo- i Massoobmena im. A V Lykova, 2018) p. 353
  173. Kavinkumar T, Shobin L R, Manivannan S J. Alloys Compd. 784 301 (2019)
  174. Timofeeva T E, Nikolaev D V, Timofeev V B Innovatsion. Nauka (7) 18 (2015)
  175. Cutroneo M et al Vacuum 165 134 (2019)
  176. Tian Y et al J. Mater. Chem. A 3 11294 (2015)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions