Issues

 / 

2022

 / 

August

  

Instruments and methods of investigation


Remote measurement of the temperature distribution on the surface of solids under high-power laser irradiation

, , , ,
Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences, ul. Butlerova 15, Moscow, 117342, Russian Federation

The paper reviews the latest results on the application of hyperspectral imaging to measure the temperature distribution and the emissivity on the surface of solids under laser heating in diamond anvil cells. In 2016, it was proposed to use a double acousto-optic filter, which enabled obtaining a large set of experimental points on the Planck curve and achieving a high accuracy of temperature determination. Employing an acousto-optic filter also makes it possible to visualize the intensity distribution of infrared laser radiation, study melting, and meas„ure the thermal conductivity of metals at high pressures and temperatures.

Fulltext pdf (908 KB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.038996
Keywords: laser heating, temperature distribution, high pressures, emissivity, thermal radiation, phase transitions, diamond anvil cells
PACS: 07.35.+k, 07.60.−j, 42.79.Jq (all)
DOI: 10.3367/UFNe.2021.05.038996
URL: https://ufn.ru/en/articles/2022/8/e/
001099034300005
2-s2.0-85182914505
Citation: Zinin P V, Bulatov K M, Bykov A A, Mantrova Yu V, Kutuza I B "Remote measurement of the temperature distribution on the surface of solids under high-power laser irradiation" Phys. Usp. 65 852–863 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, April 2021, revised: 18th, May 2021, 24th, May 2021

Оригинал: Зинин П В, Булатов К М, Быков А А, Мантрова Ю В, Кутуза И Б «Дистанционное измерение распределения температуры на поверхности твёрдых тел при воздействии мощного лазерного излучения» УФН 192 913–925 (2022); DOI: 10.3367/UFNr.2021.05.038996

References (77) ↓ Similar articles (16)

  1. Bridgman P W The Physics Of High Pressure (London: G. Bells and Sons, 1931); Translated into Russian, Bridgman P W Fizika Vysokikh Davlenii (Moscow: ONTI, 1935)
  2. Boldyreva E V et al Issledovanie Tverdofaznykh Prevrashchenii Pri Pomoshchi Rentgenovskoi Difraktsii V Usloviyakh Vysokikh Davlenii In Situ (Solid-Phase Transformations Research By X-Ray Diffraction Under High-Pressure Conditions In Situ) (Novosibirsk: Izd. SO RAN, 2016)
  3. Popova S V, Brazhkin V V, Dyuzheva T I Phys. Usp. 51 1064 (2008); Popova S V, Brazhkin V V, Dyuzheva T I Usp. Fiz. Nauk 178 1104 (2008)
  4. Savvatimskii A I, Onufriev S V Phys. Usp. 63 1015 (2020); Savvatimskii A I, Onufriev S V Usp. Fiz. Nauk 190 1085 (2020)
  5. Anderson D L Theory Of The Earth (Boston: Blackwells Scientific Publ., 1989)
  6. Hemley R J, Bell P M, Mao H K Science 237 605 (1987)
  7. Boehler R, Chopelas A Geophys. Res. Lett. 18 1147 (1991)
  8. Dubrovinsky L et al Nat. Commun. 3 7 (2012)
  9. Tateno S et al Science 330 359 (2010)
  10. Bassett W A High Pressure Res. 29 (2) CP5-186 (2009)
  11. Murakami M et al Geophys. Res. Lett. 32 4 (2005)
  12. Eremets M I et al Nat. Mater. 3 558 (2004)
  13. Zinin P V et al J. Appl. Phys. 111 114905 (2012)
  14. McMillan P F Nat. Mater. 1 (1) 19 (2002)
  15. Riedel R et al "Superhard materials" Handbook Of Solid State Chemistry (Eds R Dronskowski, Sh Kikkawa, A Stein) (Weinheim: Wiley-VCH, 2017) p. 175
  16. Brazhkin V V Phys. Usp. 63 523 (2020); Brazhkin V V Usp. Fiz. Nauk 190 561 (2020)
  17. Dubrovinskaia N et al Sci. Adv. 2 (7) 12 (2016)
  18. Dewaele A et al Nat. Commun. 9 2913 (2018)
  19. Yagi T et al High Pressure Res. 40 (1) 148 (2020)
  20. Fedotenko T et al Rev. Sci. Instrum. 90 104501 (2019)
  21. Troyan I et al Science 351 1303 (2016)
  22. Drozdov A P et al Nature 569 528 (2019)
  23. Bassett W A Rev. Sci. Instrum. 72 1270 (2001)
  24. Ming L C, Bassett W A Rev. Sci. Instrum. 45 1115 (1974)
  25. Prakapenka V B et al High Pressure Res. 28 (3) 225 (2008)
  26. Anzellini S, Boccato S Crystals 10 28 (2020)
  27. Heinz D L, Jeanloz R High-Pressure Research In Mineral Physics (Ed. Y Syono) (Washington, DC: American Geophysical Union, 1987) p. 113
  28. Kavner A, Nugent C Rev. Sci. Instrum. 79 024902 (2008)
  29. Kavner A, Panero W R Phys. Earth Planet. Interiors 143-144 527 (2004)
  30. Burgress K et al Ultrasonics 54 963 (2014)
  31. Zinin P V et al Rev. Sci. Instrum. 87 123908 (2016)
  32. Campbell A J Rev. Sci. Instrum. 79 015108 (2008)
  33. Zinin P V et al High Pressure Res. 39 131 (2019)
  34. Draper N R, Smith H Applied Regression Analysis (New York: Wiley, 1966)
  35. Du Z X et al Rev. Sci. Instrum. 84 075111 (2013)
  36. Deng J et al J. Appl. Phys. 121 025901 (2017)
  37. Deemyad S, Papathanassiou A N, Silvera I F J. Appl. Phys. 105 093543 (2009)
  38. Rainey E S G, Hernlund J W, Kavner A J. Appl. Phys. 114 204905 (2013)
  39. Machikhin A S et al Opt. Lett. 41 901 (2016)
  40. Pustovoit V I et al Proc. SPIE 5953 59530P (2005)
  41. Magunov A N Instrum. Exp. Tech. 52 451 (2009); Magunov A N Prib. Tekh. Eksp. (4) 5 (2009)
  42. Jamieson J C, Lawson A W, Nachtrieb N D Rev. Sci. Instrum. 30 1016 (1959)
  43. Weir C E et al J. Res. Natl. Bureau Stand. A 6 (1) 55 (1959)
  44. Syassen K High Pressure Res. 28 (2) 75 (2008)
  45. Piermarini G J et al J. Appl. Phys. 46 2774 (1975)
  46. Zou G T et al Rev. Sci. Instrum. 72 1298 (2001)
  47. Jephcoat A P, Besedin S P Philos. Trans. R. Soc. Lond. A 354 1333 (1996)
  48. Bulatov K M et al J. Phys. Conf. Ser. 1636 012034 (2020)
  49. Mazur M M et al Opt. Spectrosc. 81 475 (1996); Mazur M M et al Opt. Spektrosk. 81 521 (1996)
  50. Balakhov I V, Korobov V K, Pustovoit V I "Method of the color temperature measurement" USSR Patent (1972); http://www.findpatent.ru/patent/101/1012038.html
  51. Kozlova O et al Rev. Sci. Instrum. 87 125101 (2016)
  52. Machikhin A S et al Instrum. Exp. Tech. 60 401 (2017); Machikhin A S et al Prib. Tekh. Eksp. (3) 100 (2017)
  53. Machikhin A S, Zinin P V, Shurygin A V Phys. Procedia 70 733 (2015)
  54. Balakshii V I, Parygin V N, Chirkov L E Fizicheskie Osnovy Akustooptiki (Physical Foundations Of Acustopics) (Moscow: Radio i Svyaz’, 1985)
  55. Goutzoulis A P, Pape D R (Eds) Design And Fabrication Of Acousto-Optic Devices (New York: M. Dekker, 1994)
  56. Magunov A N Instrum. Exp. Tech. 53 910 (2010); Magunov A N Nauch. Priborostroenie 20 (3) 22 (2010)
  57. Ribaud G Traite De Pyrometrie Optique (Paris: De La Revue, 1931)
  58. Giampaoli R et al High Pressure Res. 38 250 (2018)
  59. Mantrova Yu V et al J. Opt. Technol. 87 642 (2020); Mantrova Yu V et al Opt. Zh. 87 (11) 10 (2020)
  60. Taylor J An Introduction To Error Analysis (Mill Valley, CA: Univ. Science Books, 1982); Translated into Russian, Taylor J Vvedenie V Teoriyu Oshibok (Moscow: Mir, 1985)
  61. Bulatov K M et al Comput. Opt. 41 864 (2017)
  62. Bykov A A et al J. Phys. Conf. Ser. 946 012085 (2018)
  63. Mantrova Y V et al J. Phys. Conf. Ser. 1421 012060 (2019)
  64. Bulatov K M et al High Pressure Res. 40 315 (2020)
  65. Bulatov K M et al C. R. Geosci. 351 (2-3) 286 (2019)
  66. Bykov A et al J. Phys. Conf. Ser. 1421 012031 (2019)
  67. Liu H W et al Measurement Sci. Technol. 27 (2) 10 (2016)
  68. Jyothi J et al Solar Energy Mater. Solar Cells 171 123 (2017)
  69. Rozenbaum O et al Rev. Sci. Instrum. 70 4020 (1999)
  70. Honner M et al Appl. Thermal Eng. 94 76 (2016)
  71. Du Zh et al Rev. Sci. Instrum. 84 075111 (2013)
  72. Pujana J et al Measurement Sci. Technol. 18 3409 (2007)
  73. Boehler R Hyperfine Interactions 128 (1-3) 307 (2000)
  74. Salem R et al Rev. Sci. Instrum. 86 093907 (2015)
  75. Errandonea D et al Phys. Rev. B 63 132104 (2001)
  76. Boehler R Nature 363 534 (1993)
  77. Bulatov K M, Zinin P V, Bykov A A J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 14 1092 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions