Issues

 / 

2022

 / 

August

  

Instruments and methods of investigation


Accelerator-based neutron source for boron neutron capture therapy

 a, b,  c, d,  a, b,  a,  a,  a,  d,  a, b,  a, b,  a, b,  d,  a,  a,  a,  a,  a, d,  a, b,  a, b,  a,  a,  a
a Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation
c TAE Life Sciences, 19631 Pauling, Foothill Ranch, CA, 92610, USA
d TAE Technologies, 19631 Pauling, Foothill Ranch, CA, 92610, USA

An accelerator-based neutron source is being developed for boron neutron capture therapy (BNCT) of oncological diseases. In the source, neutrons are produced through interaction of a proton beam accelerated in an electrostatic tandem accelerator with a lithium target. The source generates an optimal neutron beam for BNCT treatment, and has several unique practical characteristics that make it ideally suited for clinical use. Namely, the tandem accelerator is compact (its design does not utilize accelerator tubes), reliable, simple and flexible in operation, and relatively inexpensive. The paper provides a comprehensive overview of studies of the neutron source prototype and preliminary test results of the first special„ized neutron source for clinical trials of BNCT.

Fulltext pdf (1.5 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.02.038940
Keywords: accelerator-based neutron source, electrostatic accelerator, boron neutron capture therapy, negative hydrogen ion source
PACS: 29.20.−c, 29.25.Dz, 87.19.xj, 87.53.−j, 87.55.−x (all)
DOI: 10.3367/UFNe.2021.02.038940
URL: https://ufn.ru/en/articles/2022/8/d/
001099034300004
2-s2.0-85180477016
Citation: Ivanov A A, Smirnov A N, Taskaev S Yu, Bayanov B F, Belchenko Yu I, Davydenko V I, Dunaevsky A, Emelev I S, Kasatov D A, Makarov A N, Meekins M, Kuksanov N K, Popov S S, Salimov R A, Sanin A L, Sorokin I N, Sycheva T V, Shudlo I M, Vorob’ev D S, Cherepkov V G, Fadeev S N "Accelerator-based neutron source for boron neutron capture therapy" Phys. Usp. 65 834–851 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, March 2021, revised: 7th, April 2021, 8th, April 2021

Оригинал: Иванов А А, Смирнов А Н, Таскаев С Ю, Баянов Б Ф, Бельченко Ю И, Давыденко В И, Дунаевский А, Емелев И С, Касатов Д А, Макаров А Н, Микенс М, Куксанов Н К, Попов С С, Санин А Л, Сорокин И Н, Сычёва Т В, Щудло И М, Воробьев Д С, Черепков В Г, Фадеев С Н «Ускорительный источник нейтронов для бор-нейтронозахватной терапии» УФН 192 893–912 (2022); DOI: 10.3367/UFNr.2021.02.038940

References (127) ↓ Cited by (1) Similar articles (6)

  1. Barth R F et al Clinic. Cancer Res. 11 3987 (2005)
  2. Moss R L Appl. Radiat. Isot. 88 2 (2014)
  3. Sauerwein W A G et al (Eds) Neutron Capture Therapy. Principles And Applications (Heidelberg: Springer, 2012)
  4. Farr L E et al Am. J. Roeng. Ther. Nucl. Med. 71 279 (1954)
  5. Goldwin J T Cancer 8 601 (1955)
  6. Slatkin D N Brain 114 1609 (1991)
  7. Hawthorne M F, Shelly K, Wiersema R J (Eds) Frontiers In Neutron Capture Therapy Vol. 1 (New York: Springer-Verlag, 2001)
  8. Soloway A H, Hatanaka H, Davis M A J. Med. Chem. 10 714 (1967)
  9. Hatanaka H Basic Life Sci. 54 15 (1990)
  10. Mishima Y et al Basic Life Sci. 50 251 (1989)
  11. Granada A D et al Neurosurgery 44 1182 (1999)
  12. Busse P M et al J. Neurooncol. 62 111 (2003)
  13. Sauerwein W, Zurlo A Eur. J. Cancer 38 (Suppl. 4) 31 (2002)
  14. Joensuu H et al J. Neurooncol. 62 123 (2003)
  15. Capala J et al J. Neurooncol. 62 135 (2003)
  16. Dbaly V et al Ces. Slov. Neurol. Neurochir. 66-69 60 (2002)
  17. Nakagawa Y et al J. Neurooncol. 62 87 (2003)
  18. González S J et al Appl. Radiat. Isot. 61 1101 (2004)
  19. Kato I et al Appl. Radiat. Isot. 61 1069 (2004)
  20. Kankaanranta L et al Int. J. Radiat. Oncol. Biol. Phys. 82 (1) E67 (2012)
  21. Tamura Y et al J. Neurosurg. 105 898 (2006)
  22. Suzuki M et al Radiotherapy Oncol. 88 (2) 192 (2008)
  23. Suzuki M et al Jpn. J. Clin. Oncol. 37 376 (2007)
  24. Blue T, Yanch J J. Neurooncol. 62 19 (2003)
  25. Kreiner A J et al Rep. Pract. Oncol. Radiotherapy 21 2 (2016)
  26. Tanaka H et al Appl. Radiat. Isot. 67 S258 (2009)
  27. Tanaka H et al Proc. of the 14th Intern. Congress on Neutron Capture Therapy, 14ICNCT, Buenos Aires, Argentina, 25-29 October 2010 p. 447
  28. Beynon T Research And Development In Neutron Capture Therapy (Eds M W Sauerwein, R Moss, A Wittig) (Bologna: Monduzzi Editore, Intern. Proc. Division, 2002) p. 225
  29. Wangler T "Conceptual design of an RFQ accelerator-based neutron source for boron neutron capture therapy" LAUR89-912 (Los Alamos: Los Alamos National Laboratory, 1989); Wangler T Particle Accelerator Conf., Chicago, IL, March 20-23, 1989 p. 678
  30. McMichael G E, Yule T J, Zhou X-L Nucl. Instrum. Meth. Phys. Res. B 99 847 (1995)
  31. Kreiner A J et al Proc. of the 8th Intern. Topical Meeting on Nuclear Applications and Utilization of Accelerators, Pocatello, Idaho, 2007 p. 373
  32. Kreiner A J et al Appl. Radiat. Isot. 67 S266 (2009)
  33. Smick T et al Book of Abstracts of the 16th Intern. Congress on Neutron Capture Therapy, Finland, Helsinki, 2014 p. 138
  34. Tsuchida K et al Book of Abstracts of the 16th Intern. Congress on Neutron Capture Therapy, Finland, Helsinki, 2014 p. 206
  35. Forton E et al Appl. Radiat. Isot. 67 S262 (2009)
  36. Bayanov B F et al Nucl. Instrum. Method. Phys. Res. A 413 397 (1998)
  37. Dimov G I et al Atom. Energy 94 116 (2003); Dimov G I et al Atom. Energ. 94 155 (2003)
  38. Miyatake S et al J. Neurooncol. 149 1 (2020)
  39. Hirose K et al Int. J. Rad. Onc. Biol. Phys. 105 E374 (2019)
  40. Barth R F, Mi P, Yang W Cancer Commun. 38 35 (2018)
  41. Crossley E L et al Mini Rev. Medic. Chem. 7 303 (2007)
  42. Lesnikowski Z J et al Bioorg. Medic. Chem. 13 4168 (2005)
  43. Ahrens V M et al Chem. Med. Chem. 10 164 (2015)
  44. Yang W et al Clinic. Cancer Res. 14 883 (2008)
  45. Kueffer P J et al Proc. Natl. Acad. Sci. USA 110 6512 (2013)
  46. Yinghuai Z et al Curr. Chem. Biol. 1 141 (2007)
  47. Mi P et al J. Control. Release 254 1 (2017)
  48. Sivaev I B et al Eur. J. Inorg. Chem. 11 1433 (2009)
  49. Davydenko V I et al AIP Conf. Proc. 763 332 (2005)
  50. Aleinik V I et al Prib. Tekh. Eksp. (5) 5 (2013)
  51. Belchenko Yu I, Grigoryev E V Rev. Sci. Instrum. 73 939 (2002)
  52. Belchenko Yu I, Savkin V Y Rev. Sci. Instrum. 75 1704 (2004)
  53. Belchenko Yu I et al Rev. Sci. Instrum. 79 02A521 (2008)
  54. Belchenko Yu I et al Phys. Usp. 61 531 (2018); Belchenko Yu I et al Usp. Fiz. Nauk 188 595 (2018)
  55. Belchenko Yu I et al AIP Conf. Proc. 2011 050021 (2018)
  56. Sanin A L et al AIP Conf. Proc. 2052 050012 (2018)
  57. Bykov T et al AIP Conf. Proc. 2052 050013 (2018)
  58. Belchenko Yu I et al Rev. Sci. Instrum. 77 03A527 (2006)
  59. Belchenko Yu I, Sanin A L, Ivanov A A AIP Conf. Proc. 1097 214 (2009)
  60. Belchenko Yu I et al AIP Conf. Proc. 1515 448 (2013)
  61. Belchenko Yu I et al Rev. Sci. Instrum. 85 02B108 (2014)
  62. Barnet C et al "Atomic Data for Controlled Fusion Research" ORNL-5206 (Oak Ridge, TN: Oak Ridge National Laboratory, 1977)
  63. Aleinik V I et al Nauch. Vestn. Novosibirsk. Gos. Tekh. Univ. 50 (1) 83 (2013)
  64. Jacob S A W, Suter M, Synal H-A Nucl. Instrum. Meth. Phys. Res. B 172 235 (2000)
  65. Egorova V A et al "Matematicheskaya model’ vzaimodeistviya protonov s veshchestvom (A mathematical model of proton interaction with matter)" Preprint No. 138 (Moscow: Keldysh Institute of Applied Mathematics (2017)
  66. Taskaev S Yu "Neitronogeneriruyushchaya mishen’ uskoritel’nogo istochnika neitronov dlya neitronozakhvatyvayushchei terapii (The neutron-generating target of the accelerator-based neutron source for neutron capture therapy)" Preprint No. 2005-4 (Novosibirsk: Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 2005)
  67. Bayanov B Appl. Radiat. Isot. 61 817 (2004)
  68. Bayanov B F, Zhurov E V, Taskaev S Yu Instrum. Exp. Tech. 51 147 (2008); Bayanov B F, Zhurov E V, Taskaev S Yu Prib. Tekh. Eksp. (1) 160 (2008)
  69. Kasatov D JINST 15 P10006 (2020)
  70. Bayanov B F et al Instrum. Exp. Tech. 51 438 (2008); Bayanov B F et al Prib. Tekh. Eksp. (3) 119 (2008)
  71. Kasatov D et al Appl. Radiat. Isot. 106 38 (2015)
  72. Bykov T et al Appl. Radiat. Isot. 175 109821 (2021)
  73. Kasatov D A "Issledovanie materialov neitronogeneriruyushchei misheni dlya bor-neitronozakhvatnoi terapii (The study of materials of neutron-generating target for boron-neutron capture therapy)" PhD Thesis (Phys.-Math. Sci.) (Novosibirsk: Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 2022)
  74. Batrutdinov A et al Metals 7 (12) 558 (2017)
  75. Akhmetov T D et al Rev. Sci. Instrum. 77 03C106 (2006)
  76. Barker P H et al Metrologia 39 371 (2002)
  77. Biesiot W, Smith Ph B Phys. Rev. C 24 2443 (1981)
  78. Vartsky D et al Nucl. Phys. A 505 328 (1989)
  79. Burdakov A V et al Instrum. Exp. Tech. 60 522 (2017); Burdakov A V et al Prib. Tekh. Eksp. (4) 70 (2017)
  80. Kuznetsov A S et al Tech. Phys. Lett. 35 346 (2009); Kuznetsov A S et al Pis’ma Zh. Tekh. Fiz. 35 (8) (2009)
  81. Aleinik V I et al Instrum. Exp. Tech. 56 497 (2013); Aleinik V I et al Prib. Tekh. Eksp. (5) 5 (2013)
  82. Bykov T et al 6th Intern. Symp. on Negative Ions, Beams and Sources, NIBS’18, September 3-7, 2018, Novosibirsk, Russia
  83. Taskaev S Yu et al Proc. of the 9th Intern. Particle Accelerator Conf., Vancouver, Canada, MOPML062, 2018
  84. Aleynik V et al Appl. Radiat. Isot. 69 1639 (2011)
  85. Sorokin I N "Vysokovol’tnaya prochnost’ uskoritelya-tandema s vakuumnoi izolyatsiei (High-voltage strength of accelerator-tandem with vacuum insulation)" PhD Thesis (Tech. Sci.) (Novosibirsk: Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 2014)
  86. Sorokin I N, Taskaev S Yu Instrum. Exp. Tech. 57 377 (2014); Sorokin I N, Taskaev S Yu Prib. Tekh. Eksp. (4) 5 (2014)
  87. Bykov T A et al Instrum. Exp. Techn. 61 713 (2018); Bykov T A et al Prib. Tekh. Eksp. (5) 90 (2018)
  88. Ivanov A A et al Tech. Phys. Lett. 42 608 (2016); Ivanov A A et al Pis’ma Zh. Tekh. Fiz. 42 (12) 1 (2016)
  89. Kasatov D A Phys. Part. Nucl. Lett. 13 954 (2016); Kasatov D A Pis’ma Fiz. Elem. Chast. At. Yad. 13 7 (2016)
  90. Hasselkamp D et al Nucl. Instrum. Meth. 180 349 (1981)
  91. Sternglass E J Phys. Rev. 108 1 (1957)
  92. Brusilovskii B A Kineticheskaya Ionno-Elektronnaya Emissiya (Kinetic Ion-Electron Emission) (Moscow: Energoatomizdat, 1990)
  93. Ivanov A A et al JINST 11 P04018 (2016)
  94. Kuznetsov A S et al "Pervye eksperimenty po registratsii neitronov na uskoritel’nom istoshnike dlya bor-neitronozachvatnoi terapii (The first experiments on the registration of neutrons on an accelerator source for boron-neutron capture therapy)" Preprint BINP 2008-27 (Novosibirsk: Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 2008)
  95. Kasatov D et al J. Instrum. 9 P12016 (2014)
  96. Taskaev S Yu et al Proc. of the 9th Intern. Particle Accelerator Conf., Canada, Vancouver, 2018, MOPML063
  97. Batrutdinov A et al Metals 7 (12) 558 (2017)
  98. Zaidi L et al Phys. Atom. Nucl. 80 60 (2017); Zaidi L et al Yad. Fiz. 80 63 (2017)
  99. Zaidi L et al Appl. Radiat. Isot. 139 316 (2018)
  100. Bayanov B F et al Instrum. Exp. Tech. 53 883 (2010); Bayanov B F et al Prib. Tekh. Eksp. (6) 117 (2010)
  101. Aleinik V I et al Instrum. Exp. Tech. 57 381 (2014); Aleinik V I et al Prib. Tekh. Eksp. (4) 9 (2014)
  102. Porosev V, Savinov G JINST 14 P06003 (2019)
  103. Bykov T et al JINST 14 P12002 (2019)
  104. Gubanova N et al Book of Abstracts of the 16th Intern. Congress on Neutron Capture Therapy, Finland, Helsinki, 2014 p. 205
  105. Taskaev S Yu, KanygV V Bor-Neitronozakhvatnaya Terapiya (Novosibirsk: Izd. SO RAN, 2016)
  106. Kanygin V V et al J. Siberian Med. Sci. (5c) 5 (2016)
  107. Yarullina A I et al Tichookeanskii Med. Zh. (4) 6 (2015)
  108. Shoshin A et al IEEE Trans. Plasma Sci. 48 1474 (2020)
  109. Massironi A (CMS Collab.) "Precision electromagnetic calorimetry at the energy frontier: CMS ECAL at LHC Run 2" arXiv:1510.02745
  110. Zhang Z JINST 13 C04013 (2018)
  111. Kasatov D A et al Instrum. Exp. Tech. 63 611 (2020); Kasatov D A et al Prib. Tekh. Eksp. (5) 5 (2020)
  112. Kuznetsov A S et al Nucl. Instrum. Meth. Phys. Res. A 606 3 (2009)
  113. Rostoker N, Qerushi A, Binderbauer M J. Fusion Energy 22 83 (2003)
  114. Farrell J et al 7th Intern. Workshop on Positron and Positronium Chemistry, Knoxville, USA, 2002 p. 47
  115. Sorokin I N, Taskaev S Yu Appl. Radiat. Isot. 106 101 (2015)
  116. Taskaev S Yu, Kanygin V V "Sistema formirovaniya puchka neitronov (The system for the formation of a beam of epithermal neutrons)" Patent RF No. 2540124, 16.12.2014 (2014)
  117. Aleynik V et al Appl. Radiat. Isot. 88 177 (2014)
  118. Taskaev S Yu "Sposob polucheniya puchka epiteplovykh neitronov (The method for obtaining a beam of epithermal neutrons)" Patent RF No. 2722965, 05.06.2020 (2020)
  119. Lee C L, Zhou X-L Nucl. Instrum. Meth. Phys. Res. B 152 1 (1999)
  120. Domarov E V et al Instrum. Exp. Tech. 60 70 (2017); Domarov E V et al Prib. Tekh. Eksp. (1) 77 (2017)
  121. Popov S S et al Rev. Sci. Instrum. 91 013311 (2020)
  122. Fraser J S IEEE Trans. Nucl. Sci. 28 2137 (1981)
  123. Chamberlin D D, Hollabaugh J S, Stump C J IEEE Trans. Nucl. Sci. 30 2201 (1983)
  124. Pasqualotto R et al Fusion Eng. Des. 88 1253 (2013)
  125. Delogu R S et al IEEE Trans. Plasma Sci. 42 1802 (2014)
  126. Derevyankin G E et al "Ionno-opticheskii trakt 2.5 MeV 10 mA uskoritel’nogo tandema (The 2.5 MeV 10 mA ion-optical tract of the accelerating tandem)" Preprint BINP 2002-24 (Novosibirsk: Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 2002)
  127. Tiunov M A, Kuznetsov G I, Batazova M A AIP Conf. Proc. 572 155 (2001)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions