Issues

 / 

2022

 / 

July

  

Conferences and symposia


Limits of Eliashberg theory and bounds for superconducting transition temperature

 
Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation

The discovery of record-breaking values of superconducting transition temperature Tc in quite a number of hydrides under high pressure was an impressive demonstration of the capabilities of the electron—phonon mechanism of Cooper pairing. This led to increased interest in the foundations and limitations of the Eliashberg—McMillan theory as the main theory describing superconductivity in a system of electrons and phonons. Below, we shall consider both the elementary basics of this theory and a number of new results derived only recently. We shall discuss limitations on the value of the coupling constant related to lattice instability and a phase transition to another phase (CDW, bipolarons). Within the stable metallic phase, the effective pairing constant may acquire arbitrary values. We consider extensions beyond the traditional adiabatic approximation. It is shown that the Eliashberg—McMillan theory is also applicable in the strong antiadiabatic limit. The limit of very strong coupling, being the most relevant one for the physics of hydrides, is analyzed in detail. We also discuss the bounds for Tc appearing in this limit.

Fulltext pdf (347 KB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.039007
Keywords: Eliashberg equations, superconducting transition temperature, strong coupling, adiabatic and antiadiabatic approximation, superhydrides
PACS: 71.10.Fd, 74.20.−z, 74.20.Mn (all)
DOI: 10.3367/UFNe.2021.05.039007
URL: https://ufn.ru/en/articles/2022/7/f/
001100230300005
2-s2.0-85182904304
2022PhyU...65..724S
Citation: Sadovskii M V "Limits of Eliashberg theory and bounds for superconducting transition temperature" Phys. Usp. 65 724–739 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, May 2021, 12th, May 2021

Оригинал: Садовский М В «Границы применимости теории Элиашберга и ограничения на температуру сверхпроводящего перехода» УФН 192 773–789 (2022); DOI: 10.3367/UFNr.2021.05.039007

References (55) Cited by (5) Similar articles (20) ↓

  1. I.A. Troyan, D.V. Semenok et alHigh-temperature superconductivity in hydridesPhys. Usp. 65 748–761 (2022)
  2. E.G. Maksimov “Room-temperature superconductivity: myth or reality?Phys. Usp. 51 167–170 (2008)
  3. G.E. Volovik “Exotic Lifshitz transitions in topological materialsPhys. Usp. 61 89–98 (2018)
  4. E.G. Maksimov, I. Božović et alScientific session of the Physical Sciences Division of the Russian Academy of Sciences “Room temperature superconductivity” (4&nbspOctober 2007)Phys. Usp. 51 167–170 (2008)
  5. Yu.V. Kopaev, V.I. Belyavskii, V.V. Kapaev “With cuprate luggage to room-temperature superconductivityPhys. Usp. 51 191–198 (2008)
  6. V.I. Belyavskii, Yu.V. Kopaev “Ginzburg-Landau equations for high-temperature superconductorsPhys. Usp. 50 540–545 (2007)
  7. A.D. Zaikin, D.S. Golubev et alQuantum fluctuations and dissipation in thin superconducting wiresPhys. Usp. 41 226–230 (1998)
  8. A. Gold “Superconductor-insulator transition in the disordered Bose condensate: a discussion of the mode-coupling approachPhys. Usp. 41 217–220 (1998)
  9. V.M. Pudalov “The metal-insulator transition in a two-dimensional system at zero magnetic fieldPhys. Usp. 41 211–214 (1998)
  10. V.L. Ginzburg “Phase transitions in ferroelectrics: some historical remarksPhys. Usp. 44 1037–1043 (2001)
  11. R. Chentsov “Fifth all-union conference on low-temperature physicsSov. Phys. Usp. 2 329–336 (1959)
  12. I.M. Eremin “Antiferromagnetism in iron-based superconductors: magnetic order in the model of delocalized electronsPhys. Usp. 57 807–813 (2014)
  13. V.N. Ryzhov, A.F. Barabanov et alTheoretical studies of condensed matterPhys. Usp. 51 1077–1083 (2008)
  14. S.M. Stishov, L.G. Khvostantsev et alOn the 50th anniversary of the L F Vereshchagin Institute for High Pressure Physics, RAS (Scientific outreach session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2008)Phys. Usp. 51 1055–1083 (2008)
  15. V.L. Ginzburg “A few comments on superconductivity researchPhys. Usp. 48 173–176 (2005)
  16. V.I. Belyavskii, Yu.V. Kopaev “First International Conference ’Fundamental Problems of High-Temperature Superconductivity’Phys. Usp. 48 177–182 (2005)
  17. V.I. Belyavskii, Yu.V. Kopaev “Generalizing considerations about the nature of high-temperature superconductivity (based on the proceedings of M2S-HTSC-VII)Phys. Usp. 47 409–416 (2004)
  18. E.G. Maksimov “High-temperature superconductivity todayPhys. Usp. 47 957–958 (2004)
  19. Yu.V. Kopaev “High-temperature superconductivity modelsPhys. Usp. 45 655–659 (2002)
  20. V.F. Gantmakher “Superconductor-insulator transitions and insulators with localized pairsPhys. Usp. 41 214–217 (1998)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions