Issues

 / 

2022

 / 

July

  

Conferences and symposia


Limits of Eliashberg theory and bounds for superconducting transition temperature

 
Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation

The discovery of record-breaking values of superconducting transition temperature Tc in quite a number of hydrides under high pressure was an impressive demonstration of the capabilities of the electron—phonon mechanism of Cooper pairing. This led to increased interest in the foundations and limitations of the Eliashberg—McMillan theory as the main theory describing superconductivity in a system of electrons and phonons. Below, we shall consider both the elementary basics of this theory and a number of new results derived only recently. We shall discuss limitations on the value of the coupling constant related to lattice instability and a phase transition to another phase (CDW, bipolarons). Within the stable metallic phase, the effective pairing constant may acquire arbitrary values. We consider extensions beyond the traditional adiabatic approximation. It is shown that the Eliashberg—McMillan theory is also applicable in the strong antiadiabatic limit. The limit of very strong coupling, being the most relevant one for the physics of hydrides, is analyzed in detail. We also discuss the bounds for Tc appearing in this limit.

Fulltext pdf (347 KB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.039007
Keywords: Eliashberg equations, superconducting transition temperature, strong coupling, adiabatic and antiadiabatic approximation, superhydrides
PACS: 71.10.Fd, 74.20.−z, 74.20.Mn (all)
DOI: 10.3367/UFNe.2021.05.039007
URL: https://ufn.ru/en/articles/2022/7/f/
001100230300005
2-s2.0-85182904304
2022PhyU...65..724S
Citation: Sadovskii M V "Limits of Eliashberg theory and bounds for superconducting transition temperature" Phys. Usp. 65 724–739 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, May 2021, 12th, May 2021

Оригинал: Садовский М В «Границы применимости теории Элиашберга и ограничения на температуру сверхпроводящего перехода» УФН 192 773–789 (2022); DOI: 10.3367/UFNr.2021.05.039007

References (55) ↓ Cited by (3) Similar articles (20)

  1. Drozdov A P et al Nature 525 73 (2015)
  2. Eremets M I, Drozdov A P Phys. Usp. 59 1154 (2016); Eremets M I, Drozdov A P Usp. Fiz. Nauk 186 1257 (2016)
  3. Pickard C J, Errea I, Eremets M I Annu. Rev. Condens. Matter Phys. 11 57 (2020)
  4. Flores-Livas J A et al Phys. Rep. 856 1 (2020)
  5. Gor’kov L P, Kresin V Z Rev. Mod. Phys. 90 011001 (2018)
  6. Liu H et al Proc. Natl. Acad. Sci. USA 114 6990 (2017)
  7. Drozdov A P et al Nature 569 528 (2019)
  8. Somayazulu M et al Phys. Rev. Lett. 122 027001 (2019)
  9. Troyan I A et al Adv. Mater. 33 2006832 (2021)
  10. Semenok D V et al Mater. Today 48 18 (2021)
  11. Snider E et al Phys. Rev. Lett. 126 117003 (2021)
  12. Snider E et al Nature 586 373 (2020)
  13. Scalapino D J Superconductivity (Ed. R D Parks) (New York: M. Dekker, 1969) p. 449
  14. Allen P B, Mitrović B Solid State Physics Vol. 37 (Eds H Ehrenreich, F Seitz, D Turnbull) (New York: Academic Press, 1983) p. 1
  15. Kresin V Z, Morawitz H, Wolf S A Superconducting State. Mechanisms And Properties (Intern. Ser. Of Monographs On Physics, Vol. 161) (Oxford: Oxford Univ. Press, 2014)
  16. Vonsovsky S V, Izyumov Yu A, Kurmaev E Z Superconductivity Of Transition Metals: Their Alloys And Compounds (Berlin: Springer-Verlag, 1982); Translated from Russian, Vonsovsky S V, Izyumov Yu A, Kurmaev E Z Sverkhprovodimost’ Perekhodnykh Metallov, Ikh Splavov I Soedinenii (Moscow: Nauka, 1977)
  17. Migdal A B Sov. Phys. JETP 7 996 (1958); Migdal A B Zh. Eksp. Teor. Fiz. 34 1438 (1958)
  18. Abrikosov A A, Gor’kov L P, Dzyaloshinskii I Ye Quantum Field Theoretical Methods In Statistical Physics 2nd ed. (Oxford: Pergamon Press, 1965); Translated from Russian, Abrikosov A A, Gor’kov L P, Dzyaloshinskii I Ye Metody Kvantovoi Teorii Polya V Statisticheskoi Fizike (Moscow: Fizmatgiz, 1962); Translated from Russian, Abrikosov A A, Gor’kov L P, Dzyaloshinskii I Ye Metody Kvantovoi Teorii Polya V Statisticheskoi Fizike (Moscow: Dobrosvet, 1998)
  19. Schrieffer J R Theory Of Superconductivity (New York: W.A. Benjamin, 1964); Translated into Russian, Schrieffer J R Teoriya Sverkhprovodimosti (Moscow: Fizmatlit, 1968)
  20. Sadovskii M V Diagrammatics: Lectures On Selected Problems In Condensed Matter Theory 2nd ed. (Singapore: World Scientific, 2019); Translated from Russian, Sadovskii M V Diagrammatika: Lektsii Po Izbrannym Zadacham Teorii Kondensirovannogo Sostoyaniya 3rd ed. (Moscow-Izhevsk: Inst. Komp’yut. Issled., 2019)
  21. Esterlis I et al Phys. Rev. B 97 140501 (2018)
  22. Esterlis I, Kivelson S A, Scalapino D J Phys. Rev. B 99 174516 (2019)
  23. Chubukov A V et al Ann. Physics 417 168190 (2020)
  24. Sadovskii M V J. Exp. Theor. Phys. 128 455 (2019); Sadovskii M V Zh. Eksp. Teor. Fiz. 155 527 (2019)
  25. Sadovskii M V JETP Lett. 109 166 (2019); Sadovskii M V Pis’ma Zh. Eksp. Teor. Fiz. 109 165 (2019)
  26. Sadovskii M V J. Supercond. Novel Magn. 33 19 (2020)
  27. Ikeda M A, Ogasawara A, Sugihara M Phys. Lett. A 170 319 (1992)
  28. Sadovskii M V Phys. Usp. 59 947 (2016); Sadovskii M V Usp. Fiz. Nauk 186 1035 (2016)
  29. Gor’kov L P Phys. Rev. B 93 054517 (2016)
  30. Gor’kov L P Phys. Rev. B 93 060507 (2016)
  31. Gor’kov L P Proc. Natl. Acad. Sci. USA 113 4646 (2016)
  32. Choi Y W, Choi H J Phys. Rev. Lett. 127 167001 (2021)
  33. Fröhlich H Proc. R. Soc. Lond. A 215 291 (1952)
  34. Ginzburg V L, Kirzhnits D A (Eds) High-Temperature Superconductivity (New York: Consultants Bureau, 1982), Ch. 3; Translated from Russian, Ginzburg V L, Kirzhnits D A (Eds) Problema Vysokotemperaturnoi Sverkhprovodimosti (Moscow: Nauka, 1977), Ch. 3
  35. Vollhardt D Correlated Electron Systems. Proc. Of The 9th Jerusalem Winter School For Theoretical Physics (Ed. V J Emery) (Singapore: World Scientific, 1993) p. 57
  36. Pruschke Th, Jarrell M, Freericks J K Adv. Phys. 44 187 (1995)
  37. Georges A et al Rev. Mod. Phys. 68 13 (1996)
  38. Vollhardt D AIP Conf. Proc. 1297 339 (2010)
  39. Bauer J, Han J E, Gunnarsson O Phys. Rev. B 84 184531 (2011)
  40. Meyer D, Hewson A C, Bulla R Phys. Rev. Lett. 89 196401 (2002)
  41. Schrodi F, Aperis A, Oppeneer P M Phys. Rev. B 103 064511 (2021)
  42. Brovman E G, Kagan Yu M Sov. Phys. Usp. 17 125 (1974); Brovman E G, Kagan Yu M Usp. Fiz. Nauk 112 369 (1974)
  43. Geilikman B T Sov. Phys. Usp. 18 190 (1975); Geilikman B T Usp. Fiz. Nauk 115 403 (1975)
  44. Maksimov E G, Karakozov A E Phys. Usp. 51 535 (2008); Maksimov E G, Karakozov A E Usp. Fiz. Nauk 178 561 (2008)
  45. Allen P B, Dynes R C Phys. Rev. 12 905 (1975)
  46. Kresin V Z, Gutfreund H, Little W A Solid State Commun. 51 339 (1984)
  47. Cohen M L, Anderson P W AIP Conf. Proc. 4 17 (1972)
  48. Dolgov O V, Kirzhnits D A, Maksimov E G Rev. Mod. Phys. 53 81 (1981)
  49. Hoffmann J S et al arXiv:2105.09322
  50. Leavens C R Solid State Commun. 17 1499 (1975)
  51. Esterlis I, Kivelson S A, Scalapino D J Npj Quantum Mater. 3 59 (2018)
  52. Duan D et al Sci. Rep. 4 6968 (2014)
  53. Ge Y et al Mater. Today Phys. 15 100330 (2020)
  54. Shipley A M et al Phys. Rev. B 104 054501 (2021)
  55. Maksimov E G Phys. Usp. 51 167 (2008); Maksimov E G Usp. Fiz. Nauk 178 175 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions