Issues

 / 

2022

 / 

April

  

Reviews of topical problems


Metalenses for subwavelength imaging

  a,   b, §  a, *  a, #  c, °  a, c
a ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
b Kazan Federal University, Institute of Physics, 16 Kremlyovskaya str, Kazan, 420008, Russian Federation
c Aalto University, School of Electrical Engineering, P.O. Box 11000, Aalto, FI-00076, Finland

Devices that form an optical image with a subwavelength resolution in real time — metalenses — are considered. Such devices either operate with near optical fields or convert near fields into wave fields. As a result, the spatial resolution of these devices is not limited by the diffraction limit. At the same time, the image is formed at a considerable distance from the object, which distinguishes near-field metalenses from the instruments used in near-field probe microscopy. Metalenses are implemented based on metamaterials or their two-dimensional analogs, metasurfaces. Historically, this line of research was based on the so-called perfect lens, the concept of which did not withstand experimental verification but gave impetus to the development of real metalenses. Depending on the device and principle of operation, metalenses are called either superlenses or hyperlenses.

Fulltext pdf (2.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.03.038952
Keywords: diffraction limit, subwavelength resolution, near field, materials with a negative refractive index, plasmon
PACS: 42.30.−d
DOI: 10.3367/UFNe.2021.03.038952
URL: https://ufn.ru/en/articles/2022/4/b/
000848072400002
2-s2.0-85145436206
2022PhyU...65..355B
Citation: Baryshnikova K V, Kharintsev S S, Belov P A, Ustimenko N A, Tretyakov S A, Simovskii C R "Metalenses for subwavelength imaging" Phys. Usp. 65 355–378 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, August 2020, revised: 12th, March 2021, 19th, March 2021

Оригинал: Барышникова К В, Харинцев С С, Белов П А, Устименко Н А, Третьяков С А, Симовский К Р «Металинзы для получения изображений с субволновым разрешением» УФН 192 386–412 (2022); DOI: 10.3367/UFNr.2021.03.038952

References (212) Cited by (11) Similar articles (20) ↓

  1. M.V. Davidovich “Hyperbolic metamaterials: production, properties, applications, and prospectsPhys. Usp. 62 1173–1207 (2019)
  2. A.V. Kildishev, V.M. Shalaev “Transformation optics and metamaterialsPhys. Usp. 54 53–63 (2011)
  3. M.A. Remnev, V.V. Klimov “Metasurfaces: a new look at Maxwell's equations and new ways to control lightPhys. Usp. 61 157–190 (2018)
  4. M.V. Rybin, M.F. Limonov “Resonance effects in photonic crystals and metamaterials (100th anniversary of the Ioffe Institute)Phys. Usp. 62 823–838 (2019)
  5. A.A. Zyablovsky, A.P. Vinogradov et alPT-symmetry in opticsPhys. Usp. 57 1063–1082 (2014)
  6. A.V. Dorofeenko, A.A. Zyablovsky et alLight propagation in composite materials with gain layersPhys. Usp. 55 1080–1097 (2012)
  7. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonicsPhys. Usp. 61 1035–1050 (2018)
  8. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticlesPhys. Usp. 64 990–1020 (2021)
  9. D.V. Kazantsev, E.V. Kuznetsov et alApertureless near-field optical microscopyPhys. Usp. 60 259–275 (2017)
  10. A.P. Porfirev, A.A. Kuchmizhak et alPhase singularities and optical vortices in photonicsPhys. Usp. 65 789–811 (2022)
  11. S.Ya. Vetrov, I.V. Timofeev, V.F. Shabanov “Localized modes in chiral photonic structuresPhys. Usp. 63 33–56 (2020)
  12. A.E. Krasnok, I.S. Maksymov et alOptical nanoantennasPhys. Usp. 56 539–564 (2013)
  13. A.P. Vinogradov, A.V. Dorofeenko et alSurface states in photonic crystalsPhys. Usp. 53 243–256 (2010)
  14. V.G. Veselago “The electrodynamics of substances with simultaneously negative values of ε and μSov. Phys. Usp. 10 509–514 (1968)
  15. V.A. Milichko, A.S. Shalin et alSolar photovoltaics: current state and trendsPhys. Usp. 59 727–772 (2016)
  16. V.L. Kuz’min, V.P. Romanov “Coherent phenomena in light scattering from disordered systemsPhys. Usp. 39 231–260 (1996)
  17. B.V. Sokolenko, N.V. Shostka, O.S. Karakchieva “Optical tweezers and manipulators. Modern concepts and future prospectsPhys. Usp. 65 812–833 (2022)
  18. D.S. Smirnov, V.N. Mantsevich, M.M. Glazov “Theory of optically detected spin noise in nanosystemsPhys. Usp. 64 923–946 (2021)
  19. S.G. Rautian “Reflection and refraction at the boundary of a medium with negative group velocityPhys. Usp. 51 981–988 (2008)
  20. A.B. Shvartsburg “Tunneling of electromagnetic waves: paradoxes and prospectsPhys. Usp. 50 37–51 (2007)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions