Issues

 / 

2022

 / 

April

  

Reviews of topical problems


Metalenses for subwavelength imaging

  a,   b, §  a, *  a, #  c, °  a, c
a ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
b Kazan Federal University, Institute of Physics, 16 Kremlyovskaya str, Kazan, 420008, Russian Federation
c Aalto University, School of Electrical Engineering, P.O. Box 11000, Aalto, FI-00076, Finland

Devices that form an optical image with a subwavelength resolution in real time — metalenses — are considered. Such devices either operate with near optical fields or convert near fields into wave fields. As a result, the spatial resolution of these devices is not limited by the diffraction limit. At the same time, the image is formed at a considerable distance from the object, which distinguishes near-field metalenses from the instruments used in near-field probe microscopy. Metalenses are implemented based on metamaterials or their two-dimensional analogs, metasurfaces. Historically, this line of research was based on the so-called perfect lens, the concept of which did not withstand experimental verification but gave impetus to the development of real metalenses. Depending on the device and principle of operation, metalenses are called either superlenses or hyperlenses.

Fulltext pdf (2.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.03.038952
Keywords: diffraction limit, subwavelength resolution, near field, materials with a negative refractive index, plasmon
PACS: 42.30.−d
DOI: 10.3367/UFNe.2021.03.038952
URL: https://ufn.ru/en/articles/2022/4/b/
000848072400002
2-s2.0-85145436206
2022PhyU...65..355B
Citation: Baryshnikova K V, Kharintsev S S, Belov P A, Ustimenko N A, Tretyakov S A, Simovskii C R "Metalenses for subwavelength imaging" Phys. Usp. 65 355–378 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, August 2020, revised: 12th, March 2021, 19th, March 2021

Оригинал: Барышникова К В, Харинцев С С, Белов П А, Устименко Н А, Третьяков С А, Симовский К Р «Металинзы для получения изображений с субволновым разрешением» УФН 192 386–412 (2022); DOI: 10.3367/UFNr.2021.03.038952

References (212) Cited by (4) Similar articles (20) ↓

  1. M.V. Davidovich “Hyperbolic metamaterials: production, properties, applications, and prospects62 1173–1207 (2019)
  2. A.V. Kildishev, V.M. Shalaev “Transformation optics and metamaterials54 53–63 (2011)
  3. M.A. Remnev, V.V. Klimov “Metasurfaces: a new look at Maxwell's equations and new ways to control light61 157–190 (2018)
  4. M.V. Rybin, M.F. Limonov “Resonance effects in photonic crystals and metamaterials (100th anniversary of the Ioffe Institute)62 823–838 (2019)
  5. A.A. Zyablovsky, A.P. Vinogradov et alPT-symmetry in optics57 1063–1082 (2014)
  6. A.V. Dorofeenko, A.A. Zyablovsky et alLight propagation in composite materials with gain layers55 1080–1097 (2012)
  7. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonics61 1035–1050 (2018)
  8. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticles64 990–1020 (2021)
  9. A.P. Porfirev, A.A. Kuchmizhak et alPhase singularities and optical vortices in photonics65 789–811 (2022)
  10. S.Ya. Vetrov, I.V. Timofeev, V.F. Shabanov “Localized modes in chiral photonic structures63 33–56 (2020)
  11. A.E. Krasnok, I.S. Maksymov et alOptical nanoantennas56 539–564 (2013)
  12. A.P. Vinogradov, A.V. Dorofeenko et alSurface states in photonic crystals53 243–256 (2010)
  13. V.A. Milichko, A.S. Shalin et alSolar photovoltaics: current state and trends59 727–772 (2016)
  14. V.L. Kuz’min, V.P. Romanov “Coherent phenomena in light scattering from disordered systems39 231–260 (1996)
  15. B.V. Sokolenko, N.V. Shostka, O.S. Karakchieva “Optical tweezers and manipulators. Modern concepts and future prospects65 812–833 (2022)
  16. D.S. Smirnov, V.N. Mantsevich, M.M. Glazov “Theory of optically detected spin noise in nanosystems64 923–946 (2021)
  17. S.G. Rautian “Reflection and refraction at the boundary of a medium with negative group velocity51 981–988 (2008)
  18. A.B. Shvartsburg “Tunneling of electromagnetic waves: paradoxes and prospects50 37–51 (2007)
  19. A.S. Sonin “Lyotropic nematics30 875–896 (1987)
  20. I.V. Antonova “Straintronics of 2D inorganic materials for electronic and optical applications65 567–596 (2022)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions