Issues

 / 

2022

 / 

February

  

Instruments and methods of investigation


State of the art in dissociative electron attachment spectroscopy and its prospects

  a,   a, §  b, *  c
a Institute of Molecular and Crystal Physics, Ufa Research Center, Russian Academy of Sciences, prosp. Oktyabrya 151, Ufa, 450075, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Department of Experimental Physics, Comenius University, Mlynská dolina F2, Bratislava, 84248, Slovakia

The latest achievements are presented in experimental and theoretical studies of resonance scattering of low-energy (0—15-eV) electrons from molecular targets in a gas phase resulting in the formation and decay of negative ions. The focus is on dissociative electron attachment spectroscopy for studying the microsecond dynamics of molecules containing an excess electron. Some studies of fundamental processes in isolated negative ions containing up to several electronvolts of excess energy are briefly described, and the possibility of using the results in interdisciplinary fields is discussed. A goal of the paper is to attract attention to the above-mentioned studies, which are rapidly developing abroad but only scarcely presented in the domestic literature.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.09.039054
Keywords: resonance electron scattering, shape resonance, vibrational Feshbach resonance, long-lived molecular negative ions, dissociative attachment, electron autodetachment, electron-induced processes, spectroscopy, mass-spectrometry
PACS: 34.80.−i, 34.80.Ht, 34.90.+q (all)
DOI: 10.3367/UFNe.2021.09.039054
URL: https://ufn.ru/en/articles/2022/2/c/
000805351300004
2-s2.0-85119082660
2022PhyU...65..163P
Citation: Pshenichnyuk S A, Asfandiarov N L, Vorob’ev A S, Matejčík Š "State of the art in dissociative electron attachment spectroscopy and its prospects" Phys. Usp. 65 163–188 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, August 2021, revised: 3rd, September 2021, 6th, September 2021

Оригинал: Пшеничнюк С А, Асфандиаров Н Л, Воробьев А С, Матейчик Ш «Современное состояние и перспективы спектроскопии диссоциативного захвата электронов» УФН 192 177–204 (2022); DOI: 10.3367/UFNr.2021.09.039054

References (436) ↓ Cited by (19) Similar articles (19)

  1. Thomson J J Phil. Mag. 21 225 (1911)
  2. Thomson J J Phil. Mag. 41 510 (1921)
  3. Lacmann K Adv. Chem. Phys. 42 513 (1980)
  4. Kebarle P, Chowdhury S Chem. Rev. 87 513 (1987)
  5. Illenberger E, Smirnov B M Usp. Fiz. Nauk 168 731 (1998); Illenberger E, Smirnov B M Phys. Usp. 41 651 (1998)
  6. Massey H S W Rev. Mod. Phys. 28 199 (1956); Per. na russk. yaz., Messi G Usp. Fiz. Nauk 64 589 (1958)
  7. Jordan K D, Burrow P D Chem. Rev. 87 557 (1987)
  8. Jordan K D, Burrow P D Acc. Chem. Res. 11 341 (1978)
  9. Khvostenko V I, Dukel’skii V M Zh. Eksp. Teor. Fiz. 33 851 (1957); Khvostenko V I, Dukel’skii V M Sov. Phys. JETP 6 657 (1958)
  10. Schulz G J Rev. Mod. Phys. 45 378 (1973)
  11. Schulz G J Rev. Mod. Phys. 45 423 (1973)
  12. O’Malley T F Phys. Rev. 150 14 (1966)
  13. Taylor J R Scattering Theory. The Quantum Theory On Nonrelativistic Collisions (New York: Wiley, 1972); Per. na russk. yaz., Teilor Dzh Teoriya Rasseyaniya: Kvantovaya Teoriya Nerelyativistskikh Stolknovenii (M.: Mir, 1975)
  14. Christophorou L G (Ed.) Electron-Molecule Interactions And Their Applications (New York: Academic Press, 1984)
  15. Illenberger E, Momigny J Gaseous Molecular Ions. An Introduction To Elementary Processes Induced By Ionization (Darmstadt: Steinkopff Verlag, 1992)
  16. Čársky R, Čurík P (Eds) Low-Energy Electron Scattering From Molecules, Biomolecules And Surfaces (Boca Raton, FL: CRC Press. Taylor and Francis Group, 2012)
  17. Shimamura I, Takayanagi K (Eds) Electron-Molecule Collisions (New York: Plenum Press, 1984)
  18. Huo W M, Gianturco F A (Eds) Computational Methods For Electron-Molecule Collisions (New York: Plenum Press, 1995)
  19. Khvostenko V I Mass-spektrometriya Otritsatel’nykh Ionov v Organicheskoi Khimii (M.: Nauka, 1981)
  20. Khvostenko V I, Tolstikov G A Uspekhi Khimii 45 251 (1976); Khvostenko V I, Tolstikov G A Russ. Chem. Rev. 45 127 (1976)
  21. Allan M J. Electron Spectrosc. Relat. Phenom. 48 219 (1989)
  22. Stamatovic A, Schulz G J Rev. Sci. Instrum. 39 1752 (1968)
  23. Stamatovic A, Schulz G J Rev. Sci. Instrum. 41 423 (1970)
  24. Chutjian A, Garscadden A, Wadehra J M Phys. Rep. 264 393 (1996)
  25. Hotop H et al Adv. Atom. Mol. Opt. Phys. 49 85 (2003)
  26. Hotop H, Ruf M-W, Fabrikant I I Phys. Scripta 2004 (T110) 22 (2004)
  27. Fabrikant I I J. Phys. Conf. Ser. 204 012004 (2010)
  28. Andersen T Phys. Rep. 394 157 (2004)
  29. Fabrikant I I et al Adv. Atom. Mol. Opt. Phys. 66 545 (2017)
  30. Krishnakumar E, Prabhudesai V S Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons. Select Proc. of the 7th Topical Conf. of ISAMP 2018 (Springer Proceedings in Physics) Vol. 230 (Eds P C Deshmukh et al) (Singapore: Springer, 2019) p. 20
  31. Ingólfsson O Low-Energy Electrons : Fundamentals And Applications (Boca Raton, FL: CRC Press, 2019)
  32. Burrow P D, Modelli A SAR QSAR Environ. Res. 24 647 (2013)
  33. Ortiz J V WIREs Comput. Mol. Sci. 3 123 (2013)
  34. Spence D, Schulz G J J. Chem. Phys. 58 1800 (1973)
  35. Acharya P K, Kendall R A, Simons J J. Am. Chem. Soc. 106 3402 (1984)
  36. Gerchikov L G, Gribakin G F Phys. Rev. A 77 042724 (2008)
  37. Christophorou L G et al J. Phys. D 14 1889 (1981)
  38. Lu Q-B, Sanche L Phys. Rev. Lett. 87 078501 (2001)
  39. Schmidt F, Swiderek P, Bredehöft J H ACS Earth Space Chem. 3 1974 (2019)
  40. Boyer M C et al Surf. Sci. 652 26 (2016)
  41. Christophorou L G, Olthoff J K Fundamental Electron Interactions With Plasma Processing Gases (Berlin: Springer, 2012)
  42. Arumainayagam C R et al Surf. Sci. Rep. 65 1 (2010)
  43. Luo J et al Chemosphere 131 17 (2015)
  44. Pimblott S M, LaVerne J A Radiat. Phys. Chem. 76 1244 (2007)
  45. Böhler E, Warneke J, Swiderek P Chem. Soc. Rev. 42 9219 (2013)
  46. Huels M A et al Int. J. Mass Spectrom. 277 256 (2008)
  47. Byakov V M, Stepanov S V Usp. Fiz. Nauk 176 487 (2006); Byakov V M, Stepanov S V Phys. Usp. 49 469 (2006)
  48. Klenov G I, Khoroshkov V S Usp. Fiz. Nauk 186 891 (2016); Klenov G I, Khoroshkov V S Phys. Usp. 59 807 (2016)
  49. Boudaïffa B et al Science 287 1658 (2000)
  50. Khatymova L Z, Mazunov V A, Khatymov R V Istoriya Nauki Tekhniki (3) 11 (2011)
  51. Kazanskii A K, Fabrikant I I Usp. Fiz. Nauk 143 601 (1984); Kazanskii A K, Fabrikant I I Sov. Phys. Usp. 27 607 (1984)
  52. Eletskii A V, Smirnov B M Usp. Fiz. Nauk 147 459 (1985); Eletskii A V, Smirnov B M Sov. Phys. Usp. 28 956 (1985)
  53. Vostrikov A A, Samoilov I V Pis’ma ZhTF 18 (7) 58 (1992)
  54. El’kin Yu N i dr Zhurnal Analiticheskoi Khimii 42 2232 (1987)
  55. Lend’el V I, Navrotskii V T, Sabad E P Usp. Fiz. Nauk 151 425 (1987); Lend’el V I, Navrotskii V T, Sabad E P Sov. Phys. Usp. 30 220 (1987)
  56. Zapesochnyi I P i dr Dokl. Akad. Nauk SSSR 214 1288 (1974); Zapesochnyi I P et al Sov. Phys. Dokl. 19 77 (1974)
  57. Sidorov L N, Korobov M V, Zhuravleva L V Mass-spektral’nye Termodinamicheskie Issledovaniya (M.: Izd-vo MGU, 1985)
  58. Drukarev G F Stolknoveniya Elektronov s Atomami i Molekulami (M.: Nauka, 1978); Per. na angl. yaz., Drukarev G F Collisions Of Electrons With Atoms And Molecules (New York: Plenum Press, 1987)
  59. Fabrikant I I Zh. Eksp. Teor. Fiz. 73 1317 (1977); Fabrikant I I Sov. Phys. JETP 46 693 (1977)
  60. Kukhta A V et al Chem. Phys. Lett. 373 492 (2003)
  61. Kukhto A V J. Appl. Spectrosc. 65 722 (1998)
  62. Schippers S et al J. Phys. B 52 171002 (2019)
  63. Mason N J J. Phys. Conf. Ser. 565 012001 (2014)
  64. Christophorou L G Chem. Rev. 76 409 (1976)
  65. Smirnov B M Usp. Fiz. Nauk 172 1411 (2002); Smirnov B M Phys. Usp. 45 1251 (2002)
  66. Smith D, Ŝpanêl P Adv. Atom. Mol. Opt. Phys. 32 307 (1994)
  67. de Urquijo J et al Eur. Phys. J. D 55 637 (2009)
  68. de Urquijo J et al Eur. Phys. J. D 51 241 (2009)
  69. Yousfi M et al IEEE Trans. Plasma Sci. 37 764 (2009)
  70. White R D et al Eur. Phys. J. D 68 125 (2014)
  71. Casey M J et al J. Chem. Phys. 147 195103 (2017)
  72. Kopyra J et al Acta Phys. Slovaca 55 447 (2005)
  73. Nikitović Ž D et al Plasma Sources Sci. Technol. 18 035008 (2009)
  74. Dujko S et al Jpn. J. Appl. Phys. 50 08JC01 (2011)
  75. Dahl D A, Teich T H, Franck C M J. Phys. D 45 485201 (2012)
  76. Haefliger P, Hösl A, Franck C M J. Phys. D 51 355201 (2018)
  77. Wnorowski K et al Chem. Phys. Lett. 634 203 (2015)
  78. Wnorowski K et al Chem. Phys. Lett. 667 272 (2017)
  79. Michalczuk B, Barszczewska W Chem. Phys. Lett. 740 137056 (2020)
  80. Tabrizchi M, Abedi A J. Phys. Chem. A 108 6319 (2004)
  81. Feng H et al Int. J. Mass Spectrom. 305 30 (2011)
  82. Han H et al Chinese J. Chem. Phys. 24 218 (2011)
  83. Kučera M et al Eur. Phys. J. D 67 234 (2013)
  84. Krishnakumar E et al Phys. Rev. A 56 1945 (1997)
  85. Rangwala S A, Kumar S V K, Krishnakumar E Phys. Rev. A 64 012707 (2001)
  86. Rangwala S A, Krishnakumar E, Kumar S V K Phys. Rev. A 68 052710 (2003)
  87. Fedor J, May O, Allan M Phys. Rev. A 78 032701 (2008)
  88. May O, Fedor J, Allan M Phys. Rev. A 80 012706 (2009)
  89. May O, Kubala D, Allan M Phys. Rev. A 82 010701 (2010)
  90. Janečková R et al Phys. Rev. Lett. 111 213201 (2013)
  91. Chandler D W, Houston P L J. Chem. Phys. 87 1445 (1987)
  92. Eppink A T, Parker D H Rev. Sci. Instrum. 68 3477 (1997)
  93. Townsend D, Minitti M P, Suits A G Rev. Sci. Instrum. 74 2530 (2003)
  94. Nandi D et al Rev. Sci. Instrum. 76 053107 (2005)
  95. Prabhudesai V S, Nandi D, Krishnakumar E J. Phys. B 39 L277 (2006)
  96. Jagutzki O et al Nucl. Instrum. Meth. Phys. Res. A 477 244 (2002)
  97. Adaniya H et al Rev. Sci. Instrum. 83 023106 (2012)
  98. Nag P, Nandi D Phys. Rev. A 91 052705 (2015)
  99. Krishnakumar E et al Phys. Rev. Lett. 106 243201 (2011)
  100. Szymańska E et al Phys. Chem. Chem. Phys. 15 998 (2013)
  101. Rescigno T N et al Phys. Rev. A 93 052704 (2016)
  102. Moradmand A et al Rev. Sci. Instrum. 84 033104 (2013)
  103. Wu B et al Rev. Sci. Instrum. 83 013108 (2012)
  104. Wu B et al Phys. Rev. A 85 052709 (2012)
  105. Tian S X et al Phys. Rev. A 88 012708 (2013)
  106. Dreiling J M, Gay T J Phys. Rev. Lett. 113 118103 (2014)
  107. Dreiling J M et al Phys. Rev. Lett. 116 093201 (2016)
  108. Rosenberg R A Electronic And Magnetic Properties Of Chiral Molecules And Supramolecular Architectures (Topics in Current Chemstry) Vol. 298 (Eds R Naaman, D N H Beratan, D N Waldeck) (Berlin: Springer-Verlag, 2011) p. 279
  109. Davankov V A Zhurn. Fiz. Khimii 83 1405 (2009)
  110. Dreiling J M, Burtwistle S J, Gay T J. Appl. Opt. 54 763 (2015)
  111. Li Z et al Phys. Rev. Lett. 119 053402 (2017)
  112. Edelson D, Griffiths J E, McAfee K B (Jr.) J. Chem. Phys. 37 917 (1962)
  113. Ibănescu B C et al Phys. Chem. Chem. Phys. 9 3163 (2007)
  114. Abdoul-Carime H et al Eur. Phys. J. D 35 399 (2005)
  115. Ptasińska S et al J. Chem. Phys. 120 8505 (2004)
  116. Meißner R et al J. Mass Spectrom. 54 802 (2019)
  117. Bjarnason E H et al Eur. Phys. J. D 68 121 (2014)
  118. Papp P et al J. Chem. Phys. 125 204301 (2006)
  119. Modelli A, Jones D, Pshenichnyuk S A J. Phys. Chem. C 114 1725 (2010)
  120. Pshenichnyuk S A, Modelli A Int. J. Mass Spectrom. 294 93 (2010)
  121. Modelli A et al Chem. Phys. Lett. 163 269 (1989)
  122. Zawadzki M, Luxford T F M, Kočišek J. Phys. Chem. A 124 9427 (2020)
  123. Matejčík Š et al Int. J. Mass Spectrom. 223-224 9 (2003)
  124. Lehr L, Miller W H Chem. Phys. Lett. 250 515 (1996)
  125. Christophorou L G, Datskos P G Int. J. Mass Spectrom. Ion Process. 149-150 59 (1995)
  126. Srivastava S K, Orient O J Phys. Rev. A 27 1209 (1983)
  127. Chen C L, Chantry P J J. Chem. Phys. 71 3897 (1979)
  128. Christophorou L G et al Phys. Rev. Lett. 58 1316 (1987)
  129. Makarov G N Usp. Fiz. Nauk 185 717 (2015); Makarov G N Phys. Usp. 58 670 (2015)
  130. Christophorou L G, Olthoff J K Adv. Atom. Mol. Opt. Phys. 44 155 (2001)
  131. Desfrançois C, Abdoul-Carime H, Schermann J-P Int. J. Mod. Phys. B 10 1339 (1996)
  132. Gutowski M et al Int. J. Quantum Chem. 64 183 (1997)
  133. Rogers J P, Anstöter C S, Verlet J R R Nat. Chem. 10 341 (2018)
  134. Kunin A, Neumark D M Phys. Chem. Chem. Phys. 21 7239 (2019)
  135. Scheer A M et al Phys. Rev. Lett. 92 068102 (2004)
  136. Sommerfeld T J. Phys. Conf. Ser. 4 245 (2005)
  137. Jordan K D, Wang F Annu. Rev. Phys. Chem. 54 367 (2003)
  138. Simons J J. Phys. Chem. A 112 6401 (2008)
  139. Bull J N, Verlet J R R Sci. Adv. 3 e1603106 (2017)
  140. Güthe F et al Astrophys. J. 555 466 (2001)
  141. Li Z et al Phys. Rev. Lett. 122 073002 (2019)
  142. Sommerfeld T, Davis M C J. Chem. Phys. 152 054102 (2020)
  143. Castellani M E, Anstöter C S, Verlet J R R Phys. Chem. Chem. Phys. 21 24286 (2019)
  144. Anusiewicz I, Skurski P, Simons J J. Phys. Chem. A 124 2064 (2020)
  145. Zhu G-Z, Liu Y, Wang L-S Phys. Rev. Lett. 119 023002 (2017)
  146. Liu G et al Phys. Chem. Chem. Phys. 21 18310 (2019)
  147. Fabrikant I I J. Phys. B 49 222005 (2016)
  148. Fabrikant I I et al J. Chem. Phys. 136 184301 (2012)
  149. Fabrikant I I Eur. Phys. J. D 72 96 (2018)
  150. Sanche L et al Phys. Rev. Lett. 75 3568 (1995)
  151. Nagesha K, Sanche L Phys. Rev. Lett. 78 4725 (1997)
  152. Bass A D et al J. Phys. Chem. 99 6123 (1995)
  153. Ayotte P et al J. Chem. Phys. 106 749 (1997)
  154. Turner J E Am. J. Phys. 45 758 (1977)
  155. Garrett W R Mol. Phys. 24 465 (1972)
  156. Fabrikant I I Phys. Rev. A 43 3478 (1991)
  157. Burke P G, Tennyson J Mol. Phys. 103 2537 (2005)
  158. Fabrikant I I J. Phys. B 10 1761 (1977)
  159. Lane A M, Thomas R G Rev. Mod. Phys. 30 257 (1958)
  160. Hanel G et al Phys. Rev. Lett. 90 188104 (2003)
  161. Denifl S et al J. Phys. Chem. A 108 6562 (2004)
  162. Schiedt J et al Chem. Phys. 239 511 (1998)
  163. Gallup G A, Fabrikant I I Phys. Rev. A 83 012706 (2011)
  164. Burrow P D et al J. Chem. Phys. 124 124310 (2006)
  165. Janečková R et al Phys. Rev. Lett. 111 213201 (2013)
  166. Gallup G A, Burrow P D, Fabrikant I I Phys. Rev. A 79 042701 (2009)
  167. Kim H, Keller R, Gwinn W D J. Chem. Phys. 37 2748 (1962)
  168. Pshenichnyuk S A et al Phys. Rev. A 100 012708 (2019)
  169. Voora V K, Jordan K D J. Phys. Chem. A 118 7201 (2014)
  170. Voora V K, Jordan K D J. Phys. Chem. Lett. 6 3994 (2015)
  171. Rogers J P, Anstöter C S, Verlet J R R Nat. Chem. 10 341 (2018)
  172. Bull J N, Verlet J R R Sci. Adv. 3 e1603106 (2017)
  173. Sommerfeld T et al J. Chem. Phys. 133 114301 (2010)
  174. Bull J N, Anstöter C S, Verlet J R R Nat. Commun. 10 5820 (2019)
  175. Houfek K, Rescigno T N, McCurdy C W Phys. Rev. A 77 012710 (2008)
  176. Tarana M et al Phys. Rev. A 84 052717 (2011)
  177. Tennyson J Phys. Rep. 491 29 (2010)
  178. Tennyson J et al J. Phys. Conf. Ser. 86 012001 (2007)
  179. Cooper B et al Atoms 7 (4) 97 (2019)
  180. Munro J J et al J. Phys. Conf. Ser. 388 012013 (2012)
  181. Kurepa M V, Belic D S J. Phys. B 11 3719 (1978)
  182. Carr J M et al Eur. Phys. J. D 66 58 (2012)
  183. Gorfinkiel J D Eur. Phys. J. D 74 51 (2020)
  184. Huo W M, Gianturco F A (Eds) Computational Methods For Electron-Molecule Collisions (New York: Plenum Press, 1995)
  185. Schneider B I, Gharibnejad H Nat. Rev. Phys. 2 89 (2020)
  186. Schneider B I, Rescigno T N Phys. Rev. A 37 3749 (1988)
  187. Takatsuka K, McKoy V Phys. Rev. A 30 1734 (1984)
  188. da Costa R F et al Eur. Phys. J. D 69 159 (2015)
  189. Grimme S Angew. Chem. Int. Ed. 52 6306 (2013)
  190. Ásgeirsson V, Bauer C A, Grimme S Chem. Sci. 8 4879 (2017)
  191. Bauer C A, Grimme S J. Phys. Chem. A 120 3755 (2016)
  192. Pshenichnyuk S A et al Phys. Chem. Chem. Phys. 20 22272 (2018)
  193. Pshenichnyuk S A, Vorob’ev A S, Modelli A J. Chem. Phys. 135 184301 (2011)
  194. Ásgeirsson V, Bauer C A, Grimme S Phys. Chem. Chem. Phys. 18 31017 (2016)
  195. Flosadóttir H D et al Phys. Chem. Chem. Phys. 13 15283 (2011)
  196. Ómarsson B et al Phys. Chem. Chem. Phys. 15 4754 (2013)
  197. Feng W L, Tian S X Int. J. Mass Spectrom. 399 40 (2016)
  198. Zhang Y et al Sci. Rep. 9 19532 (2019)
  199. Modelli A Phys. Chem. Chem. Phys. 5 2923 (2003)
  200. Kossoski F, Varella M D N, Barbatti M J. Chem. Phys. 151 224104 (2019)
  201. Goursaud S, Sizun M, Fiquet-Fayard F J. Chem. Phys. 65 5453 (1976)
  202. Lehr L, Manz J, Miller W H Chem. Phys. 214 301 (1997)
  203. Goursaud S, Sizun M, Fiquet-Fayard F J. Chem. Phys. 68 4310 (1978)
  204. McAllister M et al J. Phys. Chem. B 123 1537 (2019)
  205. Frisch M J et a Gaussian 09, Revision A.02 (Wallingford, CT: Gaussian, Inc., 2009)
  206. Granovsky A A J. Chem. Phys. 134 214113 (2011)
  207. Simons J, Jordan K D Chem. Rev. 87 535 (1987)
  208. Staley S W, Strnad J T J. Phys. Chem. 98 116 (1994)
  209. Chen D, Gallup G A J. Chem. Phys. 93 8893 (1990)
  210. Sanche L, Schulz G J Phys. Rev. A 5 1672 (1972)
  211. Sanche L, Schulz G J Phys. Rev. A 6 69 (1972)
  212. Scheer A M et al J. Phys. Chem. A 118 7242 (2013)
  213. Burrow P D, Gallup G A, Modelli A J. Phys. Chem. A 112 4106 (2008)
  214. Aflatooni K, Gallup G A, Burrow P D J. Phys. Chem. A 104 7359 (2000)
  215. Modelli A et al J. Phys. Chem. A 108 7440 (2004)
  216. Pshenichnyuk S A et al Phys. Rev. Res. 2 012030 (2020)
  217. Beynon J H Mass Spectrometry And Its Applications To Organic Chemistry (Amsterdam: Elsevier, 1960); Per. na russk. yaz., Beinon Dzh Mass-spektrometriya i Ee Primenenie v Organicheskoi Khimii (M.: Mir, 1964)
  218. Asfandiarov N L et al J. Chem. Phys. 147 234302 (2017)
  219. Asfandiarov N L et al J. Chem. Phys. 150 114304 (2019)
  220. Massey H S W Negative Ions (Cambridge: Cambridge Univ. Press, 1976); Per. na russk. yaz., Messi G Otritsatel’nye Iony (M.: Mir, 1979)
  221. Bardsley J N, Herzenberg A, Mandl F Proc. Phys. Soc. 89 305 (1966)
  222. Merkur’ev S P, Faddeev L D Kvantovaya Teoriya Rasseyaniya dlya Sistem Neskol’kikh Chastits (M.: Nauka, 1985); Per. na angl. yaz., Faddeev L D, Merkuriev S P Quantum Scattering Theory For Several Particles Systems (Dordrecht: Kluwer Acad. Publ., 1993)
  223. Asfandiarov N L "Konkurentsiya dissotsiatsii i avtootshchepleniya elektrona v protsessakh raspada otritsatel’nykh ionov, obrazovannykh pri zakhvate elektronov nizkikh energii" Diss. ... dokt. fiz.-mat. nauk (M.: MGU, 2010)
  224. Naff W T, Compton R N, Cooper C D J. Chem. Phys. 54 212 (1971)
  225. Compton R N et al J. Chem. Phys. 45 4634 (1966)
  226. Harland P W, Thynne J C J Inorg. Nucl. Chem. Lett. 7 29 (1971)
  227. Harland P W, Thynne J C J J. Phys. Chem. 75 3517 (1971)
  228. Klots C E J. Chem. Phys. 46 1197 (1967)
  229. Odom R W, Smith D L, Futrell J H J. Phys. B 8 1349 (1975)
  230. Cannon M et al J. Chem. Phys. 127 064314 (2007)
  231. Liu Y, Suess L, Dunning F B J. Chem. Phys. 122 214313 (2005)
  232. Rajput J, Lammich L, Andersen L H Phys. Rev. Lett. 100 153001 (2008)
  233. Shchukin P V, Muftakhov M V, Mazunov V A Proc. of the 22nd All-Russia School-Symp. of Young Scientists on Chemical Kinetics, Moscow, 2004 p. 29
  234. Lorquet J C Mass Spectrom. Rev. 13 233 (1994)
  235. Robinson P J, Holbrook K A Unimolecular Reactions (London: Wiley-Interscience, 1972)
  236. Vorob’ev A S i dr Zh. Tekh. Fiz. 79 (9) 11 (2009); Vorob’ev A S et al Tech. Phys. 54 1255 (2009)
  237. Christophorou L G Adv. Electron. Electron Phys. 46 55 (1978)
  238. Pshenichnyuk S A et al J. Chem. Phys. 132 244313 (2010)
  239. Vorob’ev A S i dr Zh. Tekh. Fiz. 84 (9) 17 (2014); Vorob’ev A S et al Tech. Phys. 59 1277 (2014)
  240. Shchukin P V et al Int. J. Mass Spectrom. 273 1 (2008)
  241. Khatymov R V et al Int. J. Mass Spectrom. 303 55 (2011)
  242. Khatymov R V et al Phys. Chem. Chem. Phys. 22 3073 (2020)
  243. Asfandiarov N L et al Rapid Commun. Mass Spectrom. 28 1580 (2014)
  244. Stockdale J A D, Compton R N, Schweinler H C J. Chem. Phys. 53 1502 (1970)
  245. Christophorou L G Atomic And Molecular Radiation Physics (London: Wiley-Interscience, 1971)
  246. Thynne J C J, Harland P W Int. J. Mass Spectrom. Ion Phys. 11 137 (1973)
  247. Henis J M S, Mabie C A J. Chem. Phys. 53 2999 (1970)
  248. Naff W T, Cooper C D, Compton R N J. Chem. Phys. 49 2784 (1968)
  249. Johnson J P et al J. Chem. Soc. Faraday Trans. 2 71 1742 (1975)
  250. Pshenichnyuk S A i dr Mass-spektrometriya 2 317 (2005)
  251. Pshenichnyuk S A, Asfandiarov N L, Kukhto A V Khim. Fiz. 26 5 (2007)
  252. Presnyak V A Vestn. Sankt-Peterburgskogo Un-ta Ser. 1 (2) 116 (2010)
  253. Herzberg G Infrared And Raman Spectra Of Polyatomic Molecules (New York: Van Nostrand, 1945); Per. na russk. yaz., Gertsberg G Kolebatel’nye i Vrashchatel’nye Spektry Mnogoatomnykh Molekul (M.: IL, 1949)
  254. Pshenichnyuk S A "Rezonansnyi zakhvat elektronov molekulami organicheskikh soedinenii: eksperiment, fundamental’nye aspekty i vozmozhnye prilozheniya v molekulyarnoi elektronike i biokhimii" Diss. ... dokt. fiz.-mat. nauk (Ufa: Bashkirskii gos. un-t, 2017)
  255. Kočišek J et al J. Phys. Chem. Lett. 7 3401 (2016)
  256. Kočišk J et al Eur. Phys. J. D 70 1 (2016)
  257. Pimblott S M, LaVerne J A Radiat. Phys. Chem. 76 1244 (2007)
  258. Alizadeh E, Orlando T M, Sanche L Annu. Rev. Phys. Chem. 66 379 (2015)
  259. Sanche L Mass Spectrom. Rev. 21 349 (2002)
  260. Martin F et al Phys. Rev. Lett. 93 068101 (2004)
  261. Friedberg E C Nature 421 436 (2003)
  262. Zheng Y, Sanche L Rev. Nanosci. Nanotechnol. 2 1 (2013)
  263. Kopyra J et al Angew. Chem. Int. Ed. 48 7904 (2009)
  264. Bao Q et al J. Phys. Chem. C 118 15516 (2014)
  265. Rackwitz J et al Angew. Chem. 128 10404 (2016)
  266. Cheng H Y et al Comp. Theor. Chem. 1075 18 (2016)
  267. Huber S E et al J. Chem. Phys. 144 224309 (2016)
  268. Makurat S, Chomicz-Mańka L, Rak J Chem. Phys. Chem. 17 2572 (2016)
  269. Lange E et al J. Phys. Conf. Ser. 635 072069 (2015)
  270. Schürmann R et al J. Phys. Chem. B 121 5730 (2017)
  271. Tanzer K et al Int. J. Mass Spectrom. 365 152 (2014)
  272. Ribar A et al Chem.--Eur. J. 23 12892 (2017)
  273. Ončák M et al Int. J. Mol. Sci. 20 4383 (2019)
  274. Aflatooni K et al J. Chem. Phys. 115 6489 (2001)
  275. Scheer A M et al J. Chem. Phys. 126 174301 (2007)
  276. Papp P, Shchukin P, Matejčík Š J. Chem. Phys. 132 014301 (2010)
  277. Muftakhov M V, Shchukin P V Phys. Chem. Chem. Phys. 13 4600 (2011)
  278. Muftakhov M V, Shchukin P V Rapid Commun. Mass Spectrom. 30 2577 (2016)
  279. Muftakhov M V, Shchukin P V Izv. RAN. Ser. Khim. 9 1675 (2019)
  280. Muftakhov M V, Shchukin P V Rapid Commun. Mass Spectrom. 33 482 (2019)
  281. Muftakhov M V, Shchukin P V, Khatymov R V Zhurn. Fiz. Khimii 91 1534 (2017)
  282. Solov’yov A V (Ed.) Nanoscale Insights Into Ion-Beam Cancer Therapy (Cham: Springer Intern. Publ., 2017)
  283. Baccarelli I et al Phys. Rep. 508 1 (2011)
  284. Gorfinkiel J D, Ptasinska S J. Phys. B 50 182001 (2017)
  285. Kumar A et al Int. J. Mol. Sci. 20 3998 (2019)
  286. Postulka J et al J. Phys. Chem. B 121 8965 (2017)
  287. McAllister M et al J. Phys. Chem. Lett. 6 3091 (2015)
  288. Westphal K et al Org. Biomol. Chem. 13 10362 (2015)
  289. Shao Y et al J. Phys. Chem. C 121 2466 (2017)
  290. Mathur D J. Phys. B 48 022001 (2014)
  291. McFadden J, Al-Khalili J Proc. R. Soc. A 474 20180674 (2018)
  292. Cao J et al Sci. Adv. 6 eaaz4888 (2020)
  293. Pshenichnyuk S A, Modelli A, Komolov A S Int. Rev. Phys. Chem. 37 125 (2018)
  294. Szent-Györgyi A Science 93 609 (1941)
  295. Lovelock J E Nature 189 729 (1961)
  296. Getoff N Hormone Molec. Biol. Clinical Invest. 16 125 (2013)
  297. Getoff N In Vivo 28 61 (2014)
  298. Chen Q et al J. Biol. Chem. 278 36027 (2003)
  299. Murphy M P Biochem. J. 417 1 (2009)
  300. Hannemann F et al Biochim. Biophys. Acta BBA General Sub. 1770 330 (2007)
  301. Denisov I G et al Chem. Rev. 105 2253 (2005)
  302. Ervin K M et al J. Phys. Chem. A 107 8521 (2003)
  303. Rotko G et al Electrochem. Commun. 43 117 (2014)
  304. Saveant J M Acc. Chem. Res. 26 455 (1993)
  305. Antonello S, Maran F Chem. Soc. Rev. 34 418 (2005)
  306. Brett A M O, Ghica M E Electroanalysis 15 1745 (2003)
  307. Recknagel R O et al Pharmacol. Therapeut. 43 139 (1989)
  308. Schweizer S, Rusling J F, Huang Q Chemosphere 28 961 (1994)
  309. Rotko G, Romańczyk P P, Kurek S S Electrochem. Commun. 37 64 (2013)
  310. Firuzi O et al Biochim. Biophys. Acta BBA General Sub. 1721 174 (2005)
  311. Pshenichnyuk S A, Modelli A Phys. Chem. Chem. Phys. 15 9125 (2013)
  312. Bussy U, Boujtita M Chem. Res. Toxicol. 27 1652 (2014)
  313. Shumyantseva V V et al Biosens. Bioelectron. 121 192 (2018)
  314. Syroeshkin M A et al Angew. Chem. Int. Ed. 58 5532 (2019)
  315. Staneke P O et al Int. J. Mass Spectrom. Ion Proc. 142 83 (1995)
  316. Recknagel R O Pharmacol. Rev. 19 145 (1967)
  317. Brattin W J, Glende E A (Jr.), Recknagel R O J. Free Radicals Biol. Med. 1 27 (1985)
  318. Chu S C, Burrow P D Chem. Phys. Lett. 172 17 (1990)
  319. Gregory N L Nature 212 1460 (1966)
  320. Gutteridge J M, Halliwell B Trends Biochem. Sci. 15 129 (1990)
  321. Basu S Toxicol. 189 113 (2003)
  322. Modelli A, Pshenichnyuk S A J. Phys. Chem. A 116 3585 (2012)
  323. Pshenichnyuk S A, Lomakin G S, Modelli A Phys. Chem. Chem. Phys. 13 9293 (2011)
  324. Pshenichnyuk S A et al J. Phys. Chem. B 120 12098 (2016)
  325. Demidchik V Environ. Experim. Botan. 109 212 (2015)
  326. Pshenichnyuk S A, Komolov A S J. Phys. Chem. B 121 749 (2017)
  327. Modelli A, Pshenichnyuk S A Phys. Chem. Chem. Phys. 15 1588 (2013)
  328. Pshenichnyuk S A et al Phys. Chem. Chem. Phys. 17 16805 (2015)
  329. Pshenichnyuk S A, Komolov A S J. Phys. Chem. Lett. 6 1104 (2015)
  330. Asfandiarov N L et al Int. J. Mass Spectrom. 412 26 (2017)
  331. Pshenichnyuk S A, Komolov A S J. Phys. Chem. Lett. 5 2916 (2014)
  332. Pshenichnyuk S A et al J. Phys. Chem. B 121 3965 (2017)
  333. Pshenichnyuk S A et al J. Phys. Chem. A 120 2667 (2016)
  334. Muftakhov M V, Shchukin P V Chem. Phys. Lett. 739 136967 (2020)
  335. Hendrickson H P, Kaufman A D, Lunte C E J. Pharmaceut. Biomed. Analys. 12 325 (1994)
  336. Heim K E, Tagliaferro A R, Bobilya D J J. Nutrition. Biochem. 13 572 (2002)
  337. Leopoldini M, Russo N, Toscano M Food Chem. 125 288 (2011)
  338. Pshenichnyuk S A i dr Pis’ma Materialakh 5 504 (2015)
  339. Ohsawa I et al Nat. Med. 13 688 (2007)
  340. Hong Y, Chen S, Zhang J M J. Int. Med. Res. 38 1893 (2010)
  341. Cochemé H M et al Mitochondrion 7 S94 (2007)
  342. Weissig V Trends Mol. Med. 26 40 (2020)
  343. Pshenichnyuk S A, Modelli A Mitochondrial Medicine (Methods in Molecular Biology, Vol. 2277) Vol. 3 (Eds V Weissig, M Edeas) 2nd ed. (New York: Springer, Humana Press, 2021) p. 101
  344. Pshenichnyuk S A, Modelli A J. Chem. Phys. 136 234307 (2012)
  345. Lee E K et al Adv. Mater. 29 1703638 (2017)
  346. Zhou W et al Nano Lett. 14 1614 (2014)
  347. Modelli A, Burrow P D J. Phys. Chem. A 115 1100 (2011)
  348. Tuktarov R F i dr Pis’ma ZhETF 96 738 (2012); Tuktarov R F et al JETP Lett. 96 664 (2012)
  349. Pshenichnyuk S A et al J. Phys. Chem. A 118 6810 (2014)
  350. Pshenichnyuk S A i dr Zh. Tekh. Fiz. 81 (6) 8 (2011); Pshenichnyuk S A Tech. Phys. 56 754 (2011)
  351. Pshenichnyuk S A, Komolov A S J. Phys. Chem. A 116 761 (2012)
  352. Pshenichnyuk S A i dr Khimicheskaya Fizika 29 (11) 82 (2010); Pshenichnyuk S A et al Russ. J. Phys. Chem. B 4 1014 (2010)
  353. Khatymov R V, Muftakhov M V, Shchukin P V Rapid Commun. Mass Spectrom. 31 1729 (2017)
  354. Muftakhov M V, Khatymov R V, Tuktarov R F Zh. Tekh. Fiz. 88 1893 (2018); Muftakhov M V, Khatymov R V, Tuktarov R F Tech. Phys. 63 1854 (2018)
  355. Pshenichnyuk I A, Kosolobov S S, Drachev V P Appl. Sci. 9 4834 (2019)
  356. Kao C Y et al Organic Lett. 16 6100 (2014)
  357. Kudernac T et al Nature 479 208 (2011)
  358. Kottas G S et al Chem. Rev. 105 1281 (2005)
  359. Pshenichnyuk S A, Asfandiarov N L, Kukhta A V Phys. Rev. A 86 052710 (2012)
  360. Pshenichnyuk S A, Asfandiarov N L Phys. Chem. Chem. Phys. 22 16150 (2020)
  361. Pshenichnyuk I A, Ćížek M Phys. Rev. B 83 165446 (2011)
  362. Pshenichnyuk I A et al J. Phys. Chem. Lett. 4 809 (2013)
  363. Komolov S A, Chadderton L T Surf. Sci. 90 359 (1979)
  364. Kaur N et al Synth. Met. 190 20 (2014)
  365. Dou L et al Chem. Rev. 115 12633 (2015)
  366. Lachinov A N, Vorob’eva N V Usp. Fiz. Nauk 176 1249 (2006); Lachinov A N, Vorob’eva N V Phys. Usp. 49 1223 (2006)
  367. Shirakawa H, Ikeda S Synth. Met. 1 175 (1980)
  368. Salazkin S N Vysokomolekulyarnye Soedineniya Ser. B 46 1244 (2004); Salazkin S N Polym. Sci. B 46 (7-8) 203 (2004)
  369. Vasil’sev Y V et al Synth. Met. 84 975 (1997)
  370. Asfandiarov N L et al J. Chem. Phys. 142 174308 (2015)
  371. Pshenichnyuk S A et al J. Chem. Phys. 151 214309 (2019)
  372. Asfandiarov N L et al J. Chem. Phys. 151 134302 (2019)
  373. Christophorou L G, Gant K S, Anderson V E J. Chem. Soc. Faraday Trans. 2 804 (1977)
  374. Matejčik Š et al J. Chem. Phys. 102 2516 (1995)
  375. Asfandiarov N L et al Rapid Commun. Mass Spectrom. 29 910 (2015)
  376. Hahndorf I et al Chem. Phys. Lett. 231 460 (1994)
  377. Pearl D M et al J. Chem. Phys. 102 2737 (1995)
  378. Neporent B S, Stepanov B I Usp. Fiz. Nauk 43 380 (1951)
  379. Klots C E J. Chem. Phys. 90 4470 (1989)
  380. Klots C E J. Chem. Phys. 93 2513 (1990)
  381. Lifshitz C, Tiernan T O, Hughes B M J. Chem. Phys. 59 3182 (1973)
  382. Lifshitz C et al J. Chem. Phys. 53 4605 (1970)
  383. Koval’skaya G A, Petrov A K, Kuibida L V Khimicheskaya Fizika 24 (6) 14 (2005)
  384. Bray R G, Berry M J J. Chem. Phys. 71 4909 (1979)
  385. Malinovskii A L, Makarov A A, Ryabov E A Pis’ma ZhETF 80 605 (2004); Malinovskii A L, Makarov A A, Ryabov E A JETP Lett. 80 532 (2004)
  386. Asfandiarov N L i dr Zhurn. Fiz. Khimii 91 880 (2017); Asfandiarov N L et al Russ. J. Phys. Chem. 91 915 (2017)
  387. Asfandiarov N et al Book of Contributed Papers of the 20th Symp. on Application of Plasma Processes, Tatranská Lomnica, Slovakia, 2015 p. 39
  388. Kalimullina L R i dr Zhurn. Fiz. Khimii 89 426 (2015); Kalimullina L R et al Russ. J. Phys. Chem. 89 429 (2015)
  389. Zhu X Q, Wang, C H J. Org. Chem. 75 5037 (2010)
  390. Corderman R R, Lineberger W C Annu. Rev. Phys. Chem. 30 347 (1979)
  391. Engelking P C, Lineberger W C J. Chem. Phys. 67 1412 (1977)
  392. Chen E S, Chen E C Rapid Commun. Mass Spectrom. 32 604 (2018)
  393. Goryunkov A A et al J. Phys. Chem. A 124 690 (2020)
  394. Ponomarev O A, Mazunov V A Izv. AN SSSR. Ser. Khim. (2) 347 (1986); Ponomarev O A, Mazunov V A Bull. Acad. Sci. USSR Div. Chem. Sci. 35 320 (1986)
  395. Khatymov R V et al J. Chem. Phys. 150 134301 (2019)
  396. Laikov D N Chem. Phys. Lett. 416 116 (2005)
  397. Collins P M et al Chem. Phys. Lett. 4 646 (1970)
  398. Vasil’ev Yu V, Mazunov V A Pis’ma ZhETF 51 129 (1990); Vasil’ev Yu V, Mazunov V A JETP Lett. 51 144 (1990)
  399. Cooper C D, Naff W T, Compton R N J. Chem. Phys. 63 2752 (1975)
  400. Pshenichnyuk S A et al Rapid Commun. Mass Spectrom. 20 383 (2006)
  401. Compton R N, Soorer C D J. Chem. Phys. 66 4325 (1977)
  402. Khvostenko O G, Tuimedov G M Rapid Commun. Mass Spectrom. 20 3699 (2006)
  403. Ponamarev O A, Mazunov V A Khimicheskaya Fizika 5 226 (1986)
  404. Sommerfeld T, Davis M C J. Chem. Phys. 149 084305 (2018)
  405. Tuktarov R F i dr Pis’ma ZhETF 81 207 (2005); Tuktarov R F et al JETP Lett. 81 171 (2005)
  406. Vasil’ev Y V, Tuktarov R F, Mazunov V A Rapid Commun. Mass Spectrom. 11 757 (1997)
  407. Tuktarov R F i dr Pis’ma ZhETF 90 564 (2009); Tuktarov R F et al JETP Lett. 90 515 (2009)
  408. Vasil’ev Y V et al Int. J. Mass Spectrom. Ion Process. 173 113 (1998)
  409. Ipatov A N "Kollektivnye elektronnye vozbuzhdeniya v atomnykh klasterakh i molekulakh" Diss. ... dokt. fiz.-mat. nauk (Sankt-Peterburg: Sankt-Peterburgskii gos. politekh. un-t, 2010)
  410. Vasil’ev Y V et al Fullerenes Nanotubes Carbon Nanostruct. 12 229 (2005)
  411. Freed K F, Jortner J J. Chem. Phys. 50 2916 (1969)
  412. Ermolaev V L Uspekhi Khimii 70 539 (2001); Ermolaev V L Russ. Chem. Rev. 70 471 (2001)
  413. Jortner J, Berry R S J. Chem. Phys. 48 2757 (1968)
  414. Khvostenko V I i dr Dokl. AN SSSR 213 1364 (1973)
  415. Medvedev E S, Osherov V I Teoriya Bezyzluchatel’nykh Perekhodov v Mnogoatomnykh Molekulakh (M.: Nauka, 1983); Per. na angl. yaz., Medvedev E S, Osherov V I Radiationless Transitions In Polyatomic Molecules (Berlin: Springer-Verlag, 1995)
  416. Neustetter M et al Angew. Chem. Int. Ed. 54 9124 (2015)
  417. Ahlenhoff K et al Phys. Chem. Chem. Phys. 21 2351 (2019)
  418. Scheuerer P, Patera L L, Repp J Nano Lett. 20 1839 (2020)
  419. Nesbitt D J, Field R W J. Phys. Chem. 100 12735 (1996)
  420. Makarov A A, Malinovskii A L, Ryabov E A Usp. Fiz. Nauk 182 1047 (2012); Makarov A A, Malinovsky A L, Ryabov E A Phys. Usp. 55 977 (2012)
  421. Stannard P R, Gelbart W M J. Phys. Chem. 85 3592 (1981)
  422. Boyall D, Reid K L Chem. Soc. Rev. 26 223 (1997)
  423. Panek P T, Jacob C R Chem. Phys. Chem. 15 3365 (2014)
  424. Gauyacq J P, Herzenberg A J. Phys. B 17 1155 (1984)
  425. Ovchinnikov A A, Erikhman N S Usp. Fiz. Nauk 138 289 (1982); Ovchinnikov A A, Erikhman N S Sov. Phys. Usp. 25 738 (1982)
  426. Kraka E, Zou W, Tao Y WIREs Comput. Mol. Sci. 10 e1480 (2020)
  427. Kunitsa A A, Bravaya K B J. Phys. Chem. Lett. 6 1053 (2015)
  428. Gertitschke P L, Domcke W Phys. Rev. A 47 1031 (1993)
  429. Slaughter D S et al J. Phys. B 49 222001 (2016)
  430. Chakraborty D, Nag P, Nandi D Rev. Sci. Instrum. 89 025115 (2018)
  431. Kohanoff J et al J. Phys. Condens. Matter 29 383001 (2017)
  432. Auría-Soro C et al Nanomaterials 9 1365 (2019)
  433. Yin H et al Small 15 1903674 (2019)
  434. Zhang Y et al Chem. Rev. 118 2927 (2018)
  435. Schürmann R, Bald I Nanoscale 9 1951 (2017)
  436. Schürmann R et al J. Chem. Phys. 153 104303 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions