Issues

 / 

2022

 / 

October

  

Reviews of topical problems


Nonlinear dynamics and machine learning of recurrent spiking neural networks

 , , ,
Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

Major achievements in designing and analyzing recurrent spiking neural networks intended for modeling functional brain networks are reviewed. Key terms and definitions employed in machine learning are introduced. The main approaches to the development and exploration of spiking and rate neural networks trained to perform specific cognitive functions are presented. State-of-the-art neuromorphic hardware systems simulating information processing by the brain are described. Concepts of nonlinear dynamics are discussed, which enable identification of the mechanisms used by neural networks to perform target tasks.

Fulltext pdf (2.1 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.08.039042
Keywords: artificial neural networks, nonlinear dynamics, machine learning, spiking neurons, modeling of cognitive functions
PACS: 07.05.Mh, 84.35.+i, 87.19.L− (all)
DOI: 10.3367/UFNe.2021.08.039042
URL: https://ufn.ru/en/articles/2022/10/b/
Citation: Maslennikov O V, Pugavko M M, Shchapin D S, Nekorkin V I "Nonlinear dynamics and machine learning of recurrent spiking neural networks" Phys. Usp. 65 1020–1038 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, June 2021, revised: 13th, August 2021, 13th, August 2021

Оригинал: Масленников О В, Пугавко М М, Щапин Д С, Некоркин В И «Нелинейная динамика и машинное обучение рекуррентных спайковых нейронных сетей» УФН 192 1089–1109 (2022); DOI: 10.3367/UFNr.2021.08.039042

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions